[1]
|
Shanmugam, S., Ramisetti, N.K., Misra, R.D.K., Hartmann, J. and Jansto, S.G. (2007) Microstructure and High Strength-Toughness Combination of a New 700MPa Nb-Microalloyed Pipeline Steel. Materials Science and Engineering, 478, 26-37. http://dx.doi.org/10.1016/j.msea.2007.06.003
|
[2]
|
Shin, S.Y., Hwang, B., Lee, S., Kim, N. J. and Ahn, S.S. (2007) Correlation of Microstructure and Charpy Impact Properties in API X70 and X80 Line-Pipe Steels. Materials Science and Engineering A, 458, 281-289. http://dx.doi.org/10.1016/j.msea.2006.12.097
|
[3]
|
Li, M., Brooks, J.A., Atteridge, D.G. and Porter, W.D. (1997) Thermophysical Property Measurements on Low Alloy High Strength Carbon Steels. Scripta Materialia, 36, 1356-1359. http://dx.doi.org/10.1016/S1359-6462(97)00051-1
|
[4]
|
Chaowen, L. and Yong, W. (2013) Three-Dimensional Finite Element Analysis of Temperature and Strees Distributions for In-Service Welding Process. Materials and Design, 52, 1052-1057. http://dx.doi.org/10.1016/j.matdes.2013.06.042
|
[5]
|
Hansen, J.L. (2003) Numerical Modelling of Welding Induced Stresses. Ph.D. Thesis. Technical University of Denmark, Kongens Lyngby.
|
[6]
|
Guimaraes, P.B., Pedrosa, P.M.A., Yadava, Y.P., Filho, A.V.S., Barbosa, J.M.A. and Ferreira, R.A.S. (2011) Obtaining Temperature Fields as a Function of Efficiency in TIG Welding by Numerical Modeling. Engenharia Térmica (Thermal Engineering), 10, 50-54.
|
[7]
|
Guimaraes, P.B., Pedrosa, P.M.A., Yadava, Y.P., Filho, A.V.S., Barbosa, J.M.A. and Ferreira, R.A.S. (2013) Determination of Residual Stresses Numerically Obtained in ASTM AH36 Steel Welded by TIG Process. Materials Sciences and Applications, 4, 268-274. http://dx.doi.org/10.4236/msa.2013.44033
|
[8]
|
Deng, D. and Murakawa, H. (2006) Prediction of Welding Residual Stress in Multi-Pass Butt-Welded Modified 9Cr-1Mo Steel Pipe Considering Phase Transformation Effects. Computational Materials Science, 37, 209-219. http://dx.doi.org/10.1016/j.commatsci.2005.06.010
|
[9]
|
Yaghi, A.H., Tanner, D.W.J., Hyde, T.H., Becker, A.A. and Sun, W. (2011) Abaqus Thermal Analysis of the Fusion Welding of a P92 Steel Pipe. SIMULIA Customer Conference, Barcelona, 17-19 May 2011, 622-638.
|
[10]
|
Incropera, F.P. and Dewitt, D.P. (2008) Fundamentos de Transferência de Calor e Massa. 6th Edition, LTC, Rio de Janeiro.
|
[11]
|
Richter, F. (1973) Die Wichtigsten Physikalishen Eigenschaften von 52 Eisenwerkstoffen, Verlag Stahleisen GmbH, Dusseldorf.
|
[12]
|
Powell, R.W. and Hickman, M.J. (1946) Thermal Conductivity of a 0.8% Carbon Steel. Journal of the Iron and Steel Institute, 154, 112-116.
|
[13]
|
ASTM, E1461-01 (2001) Standard Test Method for Thermal Diffusivity by the Flash Method.
|
[14]
|
Rosenthal, D. (1941) Mathematical Theory of Heat Distribution during Welding and Cutting. Welding Journal, 20, 220-234.
|
[15]
|
Rosenthal, D. (1946) The Theory of Moving Sources of Heat and Its Applications to Metal Treatments. Transactions of the ASME, 68, 849-866.
|
[16]
|
García De Andrés, C., Caballero, F.G., Capdevila, C. and álvarez, L.F. (2002) Application of Dilatometric Analysis to the Study of Solid-Solid Phase Transformations in Steels. Materials Characterization, 48, 101-111. http://dx.doi.org/10.1016/S1044-5803(02)00259-0
|
[17]
|
Pedrosa, I.R.V., Castro, R.S., Yadava, Y.P. and Ferreira, R.A.S. (2013) Study of Phase Transformations in API 5L X80 Steel in Order to Increase Its Fracture Toughness. Materials Research, 16, 489-496.
|
[18]
|
Gery, D., Long, H. and Maropoulos, P. (2005) Effects of Welding Speed, Energy Input and Heat Source Distribution on Temperature Variations in Butt Joint Welding. Journal of Materials Processing Technology, 167, 393-401. http://dx.doi.org/10.1016/j.jmatprotec.2005.06.018
|
[19]
|
Deng, D. (2009) FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects. Materials and Design, 30, 359-366.
|
[20]
|
Attarha, M.J. and Sattari-Far, I. (2011) Study on Welding Temperature Distribution in Thin Welded Plates through Experimental Measurements and Finite Element Simulation. Journal of Materials Processing Technology, 211, 688694. http://dx.doi.org/10.1016/j.jmatprotec.2010.12.003
|
[21]
|
Shan, X., Davies, C.M., Wangsdan, T., O’Dowd, N.P. and Nikbin, K.M. (2009) Thermo-Mechanical Modelling of a Single-Bead-on-Plate Weld Using the Finite Element Method. International Journal of Pressure Vessels and Piping, 86, 110-121. http://dx.doi.org/10.1016/j.ijpvp.2008.11.005
|
[22]
|
Cape, J. and Lehman, G. (1963) Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity. Journal of Applied Physics, 34, 1909-1913. http://dx.doi.org/10.1063/1.1729711
|
[23]
|
Parker, W.J., Jenkins, R.J., Butler, C.P. and Abbott, G.L. (1961) Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity. Journal of Applied Physics, 32, 1679-1684. http://dx.doi.org/10.1063/1.1728417
|
[24]
|
Tsirkas, S.A., Papanikos, P. and Kermanidis, Th. (2003) Numerical Simulation of the Laser Welding Process in ButtJoint Specimens. Journal of Materials Processing Technology, 134, 59-69. http://dx.doi.org/10.1016/S0924-0136(02)00921-4
|
[25]
|
Klobcar, D., Tusek, J. and Taljat, B. (2004) Finite Element Modeling of GTA Weld Surfacing Applied to Hot-Work Tooling. Computational Materials Science, 31, 368-378.
|
[26]
|
Dhingra, A.K. and Murphy, C.L. (2005) Numerical Simulation of Welding-Induced Distortion in Thin-Walled Structures. Science and Technology of Welding and Joining, 10, 528-536. http://dx.doi.org/10.1179/174329305X48301
|
[27]
|
Goldak, J. and Chakravarti, A. (1984) A New Finite Element Model for Welding Heat Sources. Metallurgical Transactions B, 15, 299-305.
|
[28]
|
Goldak, J.A. and Akhlaghi, M. (2005) Computational Welding Mechanics. Springer, New York, 30-35.
|
[29]
|
Peet, M.J., Hasan, H.S. and Bhadeshia, H.K.D.H. (2011) Prediction of Thermal Conductivity of Steel. International Journal of Heat and Mass Transfer, 54, 2602-2608.
|