[1]
|
Follansbee, P.S. (2014) Fundamentals of Strength—Principles, Experiment, and Application of an Internal State Variable Constitutive Model. the Minerals, Metals, & Materials Society, John Wiley & Sons, Inc., Hoboken.
|
[2]
|
Abbott, M.M. and Van Ness, H.C. (1972) Thermodynamics (Schaum’s Outline Series). McGraw-Hill Book Co., New York.
|
[3]
|
Johnson, G.R. and Cook, W.H. (1983) A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures. Proceedings 7th International Symposium on Ballistics, The Hague, 19-21 April 1983, 541-547.
|
[4]
|
Follansbee, P.S. (1988) The Rate Dependence of Structure Evolution in Copper and Its Influence on the Strain Strain Behavior at Very High Strain Rates. In: Chiem, C.Y., Kunze, H.-D. and Meyer, L.W., Eds., Impact Loading and Dynamic Behaviour of Materials, Verlag, Berlin, 315-322.
|
[5]
|
Kocks, U.F, Argon, A.S. and Ashby, M.F. (1975) Thermodynamics and Kinetics of Slip. In: Chalmers, B., Christian, J.W. and Massalski, T.B., Eds., Progress in Materials Science, Pergamon Press, Oxford.
|
[6]
|
Mecking, H. and Kocks, U.F. (1981) Kinetics of Flow and Strain-Hardening. Acta Metallurgica, 29, 1865-1875. http://dx.doi.org/10.1016/0001-6160(81)90112-7
|
[7]
|
Edington, J.W. (1969) The Influence of Strain Rate on the Mechanical Properties and Dislocation Substructure in Deformed Copper Single Crystals. Philosophical Magazine, 19, 1189-1206. http://dx.doi.org/10.1080/14786436908228644
|
[8]
|
Follansbee, P.S. and Kocks, U.F. (1988) A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable. Acta Metallurgica, 36, 81-93. http://dx.doi.org/10.1016/0001-6160(88)90030-2
|
[9]
|
Lindholm, U.S. (1978) Deformation Maps in the Region of High Dislocation Velocity. In: Kawata, K. and Shiori, J., eds., High Velocity Deformation of Solids, Springer-Verlag, New York, 26-34.
|
[10]
|
Barbe, F., Decker, L., Jeulin, D. and Cailletaud, G. (2001) Intergranular and Intragranular Behavior of Polycrystalline Aggregates. Part 1: F. E. Model. International Journal of Plasticity, 17, 513-536. http://dx.doi.org/10.1016/S0749-6419(00)00061-9
|
[11]
|
Arsenlis, A. and Parks, D.M. (2002) Modeling the Evolution of Crystallographic Dislocation Density in Crystal Plasticity. Journal of the Mechanics and Physics of Solids, 50, 1979-2009. http://dx.doi.org/10.1016/S0022-5096(01)00134-X
|
[12]
|
Horstemeyer, M.F., Baskes, M.I., Prandil, V.C., Philliber, J. and Vonderheide, S. (2003) Amultiscale Analysis of Fixed-End Simple Shear Using Molecular Dynamics, Crystal Plasticity, and a Macroscopic Internal State Variable Theory. Modelling and Simulation in Materials Science and Engineering, 11, 265-286. http://dx.doi.org/10.1088/0965-0393/11/3/301
|