[1]
|
Langdon, T.G. (2013) Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties through Grain Refinement. Acta Materialia, 61, 7035-7059. http://dx.doi.org/10.1016/j.actamat.2013.08.018
|
[2]
|
Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V. (2000) Bulk Nanostructured Materials from Severe Plastic Deformation. Progress in Materials Science, 45, 103-189. http://dx.doi.org/10.1016/S0079-6425(99)00007-9
|
[3]
|
Valiev, R.Z. and Langdon, T.G. (2006) Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Progress in Materials Science, 51, 881-981. http://dx.doi.org/10.1016/j.pmatsci.2006.02.003
|
[4]
|
Tolaminejad, B., Brisset, F. and Baudin, T. (2012) EBSD Study of the Microstructure Evolution in a Commercially Pure Aluminium Severely Deformed by ECAP. IOP Conference Series: Materials Science and Engineering, 32, Article ID: 012025. http://dx.doi.org/10.1088/1757-899X/32/1/012025
|
[5]
|
Orlov, D. and Vinogradov, A. (2011) The Control of Texture to Improve High-Cyclic Fatigue Performance in Copper after Equal Channel Angular Pressing. Materials Science and Engineering A, 530, 174-182. http://dx.doi.org/10. 1016/j.msea.2011.09.069
|
[6]
|
Neishi, K., Horita, Z. and Langdon, T.G. (2002) Grain Refinement of Pure Nickel Using Equal-Channel Angular preSsing. Materials Science and Engineering A, 325, 54-58. http://dx.doi.org/10.1016/S0921-5093(01)01404-6
|
[7]
|
Furukawa, M., Iwahashi, Y., Nemoto, M. and Langdon, T.G. (1998) The Shearing Characteristics Associated with Equal-Channel Angular Pressing. Materials Science and Engineering A, 257, 328-332. http://dx.doi.org/10.1016/S0921-5093(98)00750-3
|
[8]
|
Iwahashi, Y., Furakawa, M., Horita, Z., Nemoto, M. and Langdon, T.G. (1998) Microstructural Characteristic of Ultrafine-Grained Aluminum Produced Using Equal-Channel Angular Pressing. Metallurgy Material Transaction A, 29, 2245-2252. http://dx.doi.org/10.1007/s11661-998-0102-5
|
[9]
|
Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z. and Langdon, T.G. (1996) Microhardness Measurements and the Hall-Petch Relationship in an Al-3%Mg Alloy with Submicrometer Grain Size. Acta Materillia, 44, 4619-4629. http://dx.doi.org/10.1016/1359-6454(96)00105-X
|
[10]
|
Furukawa, M., Horita, Z. and Langdon, T.G. (2002) Factors Influencing the Shearing Patterns in Equal-Channel Angular Pressing. Materials Science and Engineering A, 332, 97. http://dx.doi.org/10.1016/S0921-5093(01)01716-6
|
[11]
|
Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G. (1998) The Process of Grain Refinement in Equal-Channel Angular Pressing. Acta Materialia, 46, 3317. http://dx.doi.org/10.1016/S1359-6454(97)00494-1
|
[12]
|
Langdon, T.G. (2007) The Principles of Grain Refinement in Equal-Channel Angular Pressing. Materials Science and Engineering A, 462, 3-11. http://dx.doi.org/10.1016/j.msea.2006.02.473
|
[13]
|
Li, S., Gazder, A.A., Beyerlein, I.J., Davies, C.H.J. and Pereloma, E.V. (2007) Microstructure and Texture Evolution during Equal Channel Angular Extrusion of Interstitial-Free Steel: Effects of Die Angle and Processing Route. Acta Materialia, 55, 1017-1032. http://dx.doi.org/10.1016/j.actamat.2006.09.022
|
[14]
|
Davenport, S.B, Higginson, R.L. and Sellars, C.M. (1999) The Effect of Strain Path on Material Behaviour during Hot Rolling of FCC Metals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357, 1645-1661 http://dx.doi.org/10.1098/rsta.1999.0394
|
[15]
|
Majid, H., Mahmood, M., Mohammad, R.T. and Jerzy, A.S. (2008) Texture Contribution in Grain Refinement Effectiveness of Different Routes during ECAP. Materials Science and Engineering: A, 497, 87-92. http://dx.doi.org/10.1016/j.msea.2008.06.012
|
[16]
|
Branislav, H., Milo, J., Yuri, E. and Hyoung, S.K. (2007) Microstructure and Corrosion Properties of Ultrafine-Grained Interstitial Free Steel. Material Science Engineering A, 462, 243-247. http://dx.doi.org/10.1016/j.msea.2005.11.081
|
[17]
|
Li, H.B., Jiang, Z.H., Ma, Q.F. and Li, Z. (2011) Influence of Cold Working and Grain Size on Pitting Corrosion Resistance of Ferritic Stainless Steel. Advanced Materials Research, 217-218, 1180-1184. http://dx.doi.org/10.4028/www.scientific.net/AMR.217-218.1180
|
[18]
|
Peguet, L., Malki, B. and Baroux, B. (2007) Influence of Cold Working on the Resistance of Stainless Steel to Pitting Corrosion. ECS Transactions, 31, 89-97. http://dx.doi.org/10.1016/j.corsci.2006.08.021
|
[19]
|
Wang, X.Y. and Li, D.Y. (2002) Mechanical and Electrochemical Behavior of Nanocrystalline Surface of 304 Stainless Steel. Electrochemical Acta, 47, 3939-3947. http://dx.doi.org/10.1016/S0013-4686(02)00365-1
|
[20]
|
Balusamy, T., Kumar, S. and Sankara Narayanan, T.S.N. (2010) Effect of Surface Nanocryatallization on the Corrosion Behavior of AISI 409 Stainless Steel. Corrosion Science, 52, 3826-3834. http://dx.doi.org/10.1016/j.corsci.2010.07.004
|
[21]
|
Ye, W., Li, Y. and Wang, F.H. (2006) Effect of Nanocrystallization on the Corrosion Behavior of 309 Stainless Steel. Electrochemical Acta, 51, 4426-4432. http://dx.doi.org/10.1016/j.electacta.2005.12.034
|