[1]
|
Michie, D., Spiegelhalter, D.J. and Taylor, C.C. (1994) Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York. http://www1.maths.leeds.ac.uk/~charles/statlog/whole.pdf
|
[2]
|
Kotsiants, S.B., Zaharakis, I.D. and Pintelas, P.E. (2006) Machine Learning: A Review of Classification and Combining Techniques. Artificial Intelligence Review, 26, 159-190. http://dx.doi.org/10.1007/s10462-007-9052-3
|
[3]
|
Moreira, L.M. (2000) The Use of Boolean Concepts in General Classification Contexts. Ph.D. Thesis, école Polythechnique Fédérale de Lausanne, Lausanne. http://infoscience.epfl.ch/record/82654/files/rr00-46.pdf
|
[4]
|
Menon, A.K., Agarwal, H.N.S. and Chawla, S. (2013) On the Statistical Consistency of Algorithms for Binary Classification under Class Imbalance. Proceedings of the 30th International Conference on Machine Learning, Atlanta, 16-21 June 2013, 603-611.
http://clweb.csa.iisc.ernet.in/harikrishna/Papers/Class-imbalance/icml13-class-imbalance.pdf
|
[5]
|
Jakulin, A. (2003) Attribute Interactions in Machine Learning. M.Sc. Thesis, University of Ljubljana, Ljubljana.
http://www.stat.columbia.edu/~jakulin/Int/interactions_full.pdf
|
[6]
|
Natarajan, N., Dhillon, I., Ravikumar, P. and Tewari, A. (2013) Learning with Noisy Labels. Advances in Neural Information Processing Systems, NIPS, 1196-1204. http://papers.nips.cc/paper/5073-learning-with-noisy-labels
|
[7]
|
Whitley, D. (2001) An Overview of Evolutionary Algorithms: Practical Issues and Common Pitfalls. Information and Software Technology, 43, 817-831. http://dx.doi.org/10.1016/S0950-5849(01)00188-4
|
[8]
|
Hekanaho, J. (1998) An Evolutionary Approach to Concept Learning. Ph.D. Thesis, Abo Akademi University, Vasa.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.6647&rep=rep1&type=pdf
|
[9]
|
Thrun, S.B., et al. (1991) The Monk’s Problems—APerformance Comparison of Different Learning Algorithms. Technical Report, Carnigie Mellon University. http://people.cs.missouri.edu/~skubicm/375/thrun.comparison.pdf
|
[10]
|
Labatut, V. and Cherifi, H. (2012) Accuracy Measures for the Comparison of Classifiers. Proceedings of the 5th International Conference on Information Technology, Chania Crete, 7-9 July 2014, 1-5.
http://arxiv.org/ftp/arxiv/papers/1207/1207.3790.pdf
|
[11]
|
De Jong, K.A. (2006) Evolutionay Computation: A Unified Approach. MIT Press, London.
|
[12]
|
Weise, T. (2008) Global Optimization Algorithms: Theory and Application. 2nd Edition. http://www.it-weise.de
|
[13]
|
Koza, J.R. (1998) Genetic Programming. MIT Press, London.
|
[14]
|
Fogel, L.J. (1964) On the Organization of Intellect. Ph.D. Thesis, University of California, Los Angeles.
|
[15]
|
Rechenberg, I. (1965) Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment, Library Translation 1122, Farnborough.
|
[16]
|
Witten, I.H., Frank, E. and Hall, M.A. (2011) Data Mining. 3rd Edition, Morgan Kaufmann, Burlington.
|
[17]
|
Ceder, V.L. (2010) The Quick Python Book. 2nd Edition, Manning Publications Co., Greenwich.
|
[18]
|
Alcalá-Fdez, J., et al. (2011) KEEL Data-Mining Software Tool: Data Set Repository. Integration of Algorithms and Experimental Analysis Framework. Journal of Multiple-Valued Logic and Soft Computing, 17, 255-287.
http://www.keel.es
|
[19]
|
Bache, K. and Lichman, M. (2013) UCI Machine Learning Repository. University of California, School of Information and Computer Science. http://archive.ics.uci.edu/ml
|