[1]
|
Barnsley, M.F. (1986) Fractal Functions and Interpolation. Constructive Approximation, 2, 303-329. http://dx.doi.org/10.1007/BF01893434
|
[2]
|
Hutchinson, J.E. (1981) Fractals and Self Similarity. Indiana University Mathematics Journal, 30, 713-747. http://dx.doi.org/10.1512/iumj.1981.30.30055
|
[3]
|
Barnsley, M.F. and Harrington, A.N. (1989) The Calculus of Fractal Interpolation Functions. Journal of Approximation Theory, 57, 14-34. http://dx.doi.org/10.1016/0021-9045(89)90080-4
|
[4]
|
Navascués, M.A. (2005) Fractal Polynomial Interpolation. Zeitschrift für Analysis und ihre Anwendungen, 25, 401-418.
|
[5]
|
Navascués, M.A. and Chand, A.K.B. (2008) Fundamental Sets of Fractal Functions. Acta Applicandae Mathematicae, 100, 247-261.
|
[6]
|
Navascués, M.A. (2010) Fractal Approximation. Complex Analysis and Operator Theory, 4, 953-974.
|
[7]
|
Navascués, M.A. and Sebastián, M.V. (2013) Numerical Integration of Affine Fractal Functions. Journal of Computational and Applied Mathematics, 252, 169-176.
|
[8]
|
Navascués, M.A. and Sebastián, M.V. (2006) Error Bounds in Affine Fractal Interpolation. Mathematical Inequalities & Applications, 9, 273-288.
|
[9]
|
Navascués, M.A. and Sebastián, M.V. (2007) Construction of Affine Fractal Functions Close to Classical Interpolants. Journal of Computational and Applied Mathematics, 9, 271-283.
|
[10]
|
Navascués, M.A. (2014) Affine Fractal Functions as Bases of Continuous Functions. Quaestiones Mathematicae, 37, 1-14.
|
[11]
|
Chand, A.K.B. and Kapoor, G.P. (2006) Generalized Cubic Spline Fractal Interpolation Functions. SIAM Journal on Numerical Analysis, 44, 655-676. http://dx.doi.org/10.1137/040611070
|
[12]
|
Navascués, M.A. and Sebastián, M.V. (2004) Generalization of Hermite Functions by Fractal Interpolation. Journal of Approximation Theory, 131, 19-29.
|
[13]
|
Dalla, L. and Drakopoulos, V. (1999) On the Parameter Identification Problem in the Plane and Polar Fractal Interpolation Functions. Journal of Approximation Theory, 101, 289-302. http://dx.doi.org/10.1006/jath.1999.3380
|
[14]
|
Chand, A.K.B. and Viswanathan, P. (2013) A Constructive Approach to Cubic Hermite Fractal Interpolation Function and Its Constrained Aspects. BIT Numerical Mathematics, 53, 841-865. http://dx.doi.org/10.1007/s10543-013-0442-4
|
[15]
|
Navascués, M.A. (2007) Non-Smooth Polynomials. International Journal of Analysis and Applications, 1, 159-174.
|
[16]
|
Barnsley, M.F. (1988) Fractals Everywhere. Academic Press, Orlando.
|
[17]
|
Gang, C. (1996) The Smoothness and Dimension of Fractal Interpolation Functions. Applied Mathematics: A Journal of Chinese Universities, 11, 409-418.
|
[18]
|
Wang, H.Y. and Yu, J.S. (2013) Fractal Interpolation Functions with Variable Parameters and Their Analytical Properties. Journal of Approximation Theory, 175, 1-18. http://dx.doi.org/10.1016/j.jat.2013.07.008
|
[19]
|
Chand, A.K.B., Vijender, N. and Navascués, M.A. (2014) Shape Preservation of Scientific Data through Rational Fractal Splines. Calcolo, 51, 329-362.
|
[20]
|
Barnsley, M.F., Elton, J., Hardin, D. and Massopust, P. (1989) Hidden Variable Fractal Interpolation Functions. SIAM Journal on Mathematical Analysis, 20, 1218-1242. http://dx.doi.org/10.1137/0520080
|
[21]
|
Chand, A.K.B. and Kapoor, G.P. (2008) Stability of Affine Coalescence Hidden Variable Fractal Interpolation Functions. Nonlinear Anal. TMA, 68, 3757-3770.
|
[22]
|
Bouboulis, P. and Dalla, L. (2007) Fractal Interpolation Surfaces Derived from Fractal Interpolation Functions. Journal of Mathematical Analysis and Applications, 336, 919-936. http://dx.doi.org/10.1016/j.jmaa.2007.01.112
|
[23]
|
Chand, A.K.B. and Navascués, M.A. (2008) Natural Bicubic Spline Fractal Interpolation. Nonlinear Analysis: Theory, Methods & Applications, 69, 3679-3691.
|
[24]
|
Massopust, P.R. (1990) Fractal Surfaces. Journal of Mathematical Analysis and Applications, 151, 275-290. http://dx.doi.org/10.1016/0022-247X(90)90257-G
|
[25]
|
Xie, H. and Sun, H. (1997) The Study of Bivariate Fractal Interpolation Functions and Creation of Fractal Interpolation Surfaces. Fractals, 5, 625-634. http://dx.doi.org/10.1142/S0218348X97000504
|
[26]
|
Navascués, M.A. and Sebastián, M.V. (2004) Fitting Curves by Fractal Interpolation: An Application to Electroencephalographic Processing. In: Novak, M.M., Ed., Thinking in Patterns: Fractals and Related Phenomena in Nature, World Scientific Publishing, Singapore City, 143-154.
|
[27]
|
Navascués, M.A. and Sebastián, M.V. (2006) Smooth Fractal Interpolation. Journal of Inequalities and Applications, 2006, Article ID: 78734.
|
[28]
|
Viswanathan, P., Chand, A.K.B and Navascués, M.A. (2014) Fractal Perturbation Preserving Fundamental Shapes: Bounds on the Scale Factors. Journal of Mathematical Analysis and Applications, Available Online.
|
[29]
|
Navascués, M.A. (2012) Fractal Bases of Lp Spaces. Fractals, 20, 141-148.
|
[30]
|
Navascués, M.A., Sebastián, M.V. and Valdizán, J.R. (2006) Surface Laplacian and Fractal Brain Mapping. Journal of Computational and Applied Mathematics, 189, 132-141.
|
[31]
|
Navascués, M.A. and Sebastián, M.V. (2006) Spectral and Affine Fractal Methods in Signal Processing. International Mathematical Forum, 1, 1405-1422.
|
[32]
|
Navascués, M.A. and Sebastián, M.V. (2012) Legendre Transform of Sampled Signals by Fractal Methods. Monografías Seminario Matemático García de Galdeano, 37, 181-188.
|