Evapotranspiration―Soil Structure Relationship in West Marshes of France


The soil potentials, facing to the crop fields, are commonly estimated through the calculation of their available water capacity based on the ETP or ETM estimation. The present work introduces the comparison between theoretical and real available water capacity profiles calculated down to 1.00 m depth. The evapotranspiration data are used to the calculation of ETP in an undrained grassland and ETM in two drained corn fields located in the French Atlantic marshlands. The studied soils have acquired specific properties in response to the reclaiming of the clay; dominant primary sediments began since the Middle Age and late drainage works. The theoretical and real available water capacity profiles are calculated from the ETP and ETM data and from the soil moisture profiles respectively, from June to October 2013. The theoretical and real profiles are confronted to the tensiometric pressure recording at 30, 60 and 90 cm. The tensiometric pressure behavior and associated premature disconnections of the tensiometric plugs are explained thanks to the soil structure-hydromechanical property relationships: i.e. from ductile state in depth to brittle state in surface. The vertical evolutions of the real profiles are explained facing to the plant growing, pluviometry and water nape levels. Their behavior and their shifts from the linear “theoretical” ETP or ETM profiles clearly show the advance of the desiccation front and consequently the kinetics of water consumption by plants. This simple method of calculation and comparison between the real and theoretical ETM or ETP profiles allows the quantitative discussion: 1) on the role of the soil microstructure behavior on the root growing and, 2) on the realism of the crop coefficient taken into account in the ETP or ETM estimation. In these coastal marsh fields, it also argues on the difficulty of management facing to the water and/or salt stresses.

Share and Cite:

Radimy, R. , Dudoignon, P. , Hillaireau, J. and Caner, L. (2014) Evapotranspiration―Soil Structure Relationship in West Marshes of France. Journal of Water Resource and Protection, 6, 821-840. doi: 10.4236/jwarp.2014.69078.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Blaney, H.F. and Criddle, W.D. (1964) Determining Water Requirements for Settling Water Disputes. Natural Resources Journal, 4, 29-41.
[2] Holdridge, L.R. (1962) The Determination of Atmospheric Water Movements. Ecology, 43, 1-9.
[3] Thornthwaite, C.W. and Matter, J.R. (1957) Instructions and Tables for Computing Potential Evaporation and the Water Balance. Climatology, 10, 311.
[4] Garcia, J. and Lopez, J. (1970) Formula para el calculo de la evapotranspiratcion potencial adaptada al Tropico. Agronomia Tropical, 20, 335-345.
[5] Garnier, B.J. (1946) The Climates of New Zealand: According to Thornthwaite’s Classification. Annals of the Association of American Geographers, 36, 151-177.
[6] Turc, L. (1954) Le bilan d’eau des sols: Relations entre les precipitations, l’evaporation et l’ecoulement. Annales Agronomiques, 5, 491-595; 6, 5-131.
[7] Penman, H.L. (1954) Evaporation over Parts of Europe. Proceedings of the General Assembly of Rome, 3, 168-176.
[8] Monteith, J.L. (1965) Evaporation and Environment. Symposia of the Society for Experimental Biology, 19, 205-234.
[9] Bouchet, R.J. (1961) Signification et portee agronomique de l’evapotranspiration potentielle. Annales Agronomiques, 12, 51-63.
[10] Maftei, C., Gherghina, C., Gelmambet, S. and Buta, C. (2007) ETREF un logiciel qui calcule l’evapotranspiration de Reference. Annals of the Oradea University. Fascicle of Management and Technological Engineering, 6.
[11] Guyot, G. (1999) Climatologie de l’environnement—Cours et exercices corriges. Dunod, Paris, 525.
[12] Katerji, N. and Perrier, A. (1983) Modelisation de l’evapotranspiration reelle ETR d’une parcelle de luzerne: Role d’un coefficient cultural. Agronomie, 3, 513-521.
[13] Badji, M., Feyen, J. and Basstanie, L. (1982) Effet du deficit en eau du sol sur l’evapotranspiration et la production de feveroles: Une evaluation de modeles. Agronomie, 2, 213-218.
[14] Oudin, L. (2004) Recherche d’un modele d’evapotranspiration Potentielle pertinent comme entree d’un Modele pluiedebit global. These de Doctorat a l’ENGREF.
[15] Pepin, S. and Bourgeois, G. (2012) Outils agro-meteorologiques pour la planification de l’irrigation des cultures. Colloque en Agroclimatologie CRAAQ-2012.
[16] Calvet, R. (2003) Le sol: Proprietes et fonctions. Tome 2 Phenomenes physiques et chimiques: Applications agronomiques et environnementales. France Agricole Editions, 511.
[17] Boisvert, J. and Dyer, J.A. (1987) Le coefficient de sol dans les modeles empiriques de bilan hydrique. Canadian Agricultural Engineering, 29, 7-14.
[18] Lecarpentier, C. (1975) L’evapotranspiration potentielle et ses implications geographiques. Annales de Geographie, 84, 385-414.
[19] Radimy, R.T., Dudoignon, P., Hillaireau, J.M. and Deboute, E. (2013) Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity and Salt Stress Interdependence. The Scientific World Journal, 2013, 451710.
[20] Tournade, F. and Bouzille, J.B. (1991) Relations entre sol et vegetation dans les prairies naturelles humides du Marais Poitevin. Mise en evidence d’un modele d’organisation. Science du Sol, 29, 339-357.
[21] Tournade, F. and Bouzille, J.B. (1995) Determinisme pedologique de la diversite vegetale d’ecosystemes prairiaux du Marais poitevin: Application a la definition d’une gestion agri-environnementale. Etude et Gestion des Sols, 2, 57-72.
[22] Pons, Y. and Gerbaud, A. (2005) Classification agronomique des sols de marais a partir de la relation entre sodicite et stabilite structural. Application au cas des marais de l’ouest. Etude et Gestion des Sols, 12, 229-244.
[23] Pons, Y., Capillon, A. and Cheverry, C. (2000) Water Movement and Stability of Profiles in Drained, Clayey and Swelling Soils: At Saturation, the Structural Stability Determines the Profile Porosity. European Journal of Agronomy, 12, 269-279.
[24] Joulie, I., Perichon, C. and Pons, Y. (1996) Une typologie d’exploitations spatialisees: Outil de diagnostic regional de l’agriculture. Economie Rurale, 236, 16-27.
[25] Bernard, M. (2006) Etude des comportements des sols de marais: Evolution Mineralogique, Structurale et Hydromecanique. (Marais de Rochefort et Marais Poitevin) These de doctorat, Universite e Poitiers, Poitiers, 309.
[26] Bernard, M., Dudoignon, P., Pons, Y., Chevallier, C. and Boulay, L. (2007) Structural Characteristics of Clay-Dominant Soils of a Marsh and Paleosol in a Crossed Diagram. European Journal of Soil Science, 58, 1115-1126.
[27] Bernard-Ubertosi, M., Dudoignon, P. and Pons, Y. (2009) Characterization of Structural Profiles in Clay-Rich Marsh Soils by Cone Resistance and Resistivity Measurement. Soil Science Society of America Journal, 73, 46-54.
[28] Dudoignon, P., Causseque, S., Bernard, M., Hallaire, V. and Pons, Y. (2007) Vertical Porosity Profile of a Clay-Rich Marsh Soil. Catena, 70, 480-492.
[29] Dudoignon, P., Bernard-Ubertosi, M. and Hillaireau, J.M. (2009) Grasslands and Coastal Marshes Management: Role of Soil Structure. In: Schroder, H.G., Ed., Grasslands, Ecology, Management and Restore, Nova Science Publishers, New York.
[30] Gallier, J. (2011) Caracterisation des processus d’evolution structurale et de salinite des sols de marais cotiers par mesures mecaniques et geo-electriques in situ. These de doctorat, Universite de Poitiers, Poitiers, 218.
[31] Gallier, J., Dudoignon, P. and Hillaireau, J.M. (2012) Microstructure—Hydromechanical Property Relationship in Clay Dominant Soils. In: Aydinalp, C., Ed., An Introduction to the Study of Mineralogy, INTECH Open Access Publisher, 51-72.
[32] Chevallier, C. and Masson, D. (1988) Agriculture, conchyliculture et circulation des eaux de surface en Charente Maritime. Aqua Revue, 21, 27-33.
[33] Mathe, V. (2003) Signaux magnetiques dans les sols: Potentiel de la caracterisation de la texture d’un sol par les anomalies metriques et inframetriques. Prospection dans la zone humide des marais de l’Ouest de la France. These Doctorat, Universite de La Rochelle, La Rochelle, 163.
[34] Righi, D., Velde, B. and Meunier, A. (1995) Clay Stability in Clay-Dominant Soil Systems. Clay Minerals, 30, 45-54.
[35] Giraud, F., Lachassagne, P., Ladouche, B., Weng, P., Pinault, J.L. and Chevalier, C. (2000) Etude hydrologique et hydrogeologique du marais Rochefortais (Charente-Maritime), BRGM/RP-50247-FR.
[36] Weng, P., Giraud, F., Flaury, P. and Chevallier, C. (2003) Characterising and Modelling Groundwater Discharge in an Agricultural Wetland on the French Atlantic Coast. Hydrology and Earth System Sciences, 7, 33-42.
[37] Montoroi, J.P. (1997) Conductivite electrique de la solution du sol et d’extraits aqueux du sol—Application a un sol sulfate acide sale de Bassa-Casamance (Senegal). Etude et Gestion des Sols, 4, 279-298.
[38] Dudoignon, P., Gelard, D. and Sammartino, S. (2004) Cam-Clay and Hydraulic Conductivity Diagram Relations in Consolidated and Sheared Clay-Matrices. Clay Minerals, 39, 269-279.
[39] Biarez, J., Fleureau, J.M., Zerhounil, M.I. and Soepandji, B.S. (1987) Variation de volume des sols argileux lors de cycles de drainage-humidification. Revue Francaise de Geotechnique, 41, 63-71.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.