[1]
|
Richardson, L. (1961) The Problem of Contiguity: An Appendix of Statistic of Deadly Quarrels. General Systems Year Book, 61, 139-187.
|
[2]
|
Mandelbrot, B. (1967) How Long Is the Coast of Britain Statistical Self-Similarity and Fractional Dimension. Science, 156, 636-638. http://dx.doi.org/10.1126/science.156.3775.636
|
[3]
|
Duque, J.C., Betancourt, A. and Marin, F. (2014) An Algorithmic Approach for Simulating Realistic Irregular Lattices. In: Thill, J.C. and Dragicevic, S., Eds., GeoComputational Analysis and Modeling of Regional Systems, Springer Heidelberg, in press.
|
[4]
|
Mandelbrot, B. (1975) Stochastic Models for the Earth’s Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands. Proceedings of the National Academy of Sciences, 72, 3825-3828. http://dx.doi.org/10.1073/pnas.72.10.3825
|
[5]
|
Adler, R.J. (1978) Some Erratic Patterns Generated by the Planar Wiener Process. Advances in Applied Probability, 10, 22-27. http://dx.doi.org/10.2307/1427003
|
[6]
|
Cullin, W.E. and Datko, M. (1987) The Fractal Geometry of the Soil-Covered Landscape. Earth Surface Processes and Landforms, 12, 369-385. http://dx.doi.org/10.1002/esp.3290120404
|
[7]
|
Cullin, W.E. (1988) Dimension and Entropy in the Soil-Covered Landscape. Earth Surface Processes and Landforms, 13, 619-648. http://dx.doi.org/10.1002/esp.3290130706
|
[8]
|
Beauvais, A. Montgomery, D. (1996) Influence of Valley Type on the Scaling Properties of River Planforms. Water Resources Research, 32, 1441-1448. http://dx.doi.org/10.1029/96WR00279
|
[9]
|
Montgomery, K. (1996) Sinuosity and Fractal Dimension of Meandering Rivers. Area, 28, 491-500.
|
[10]
|
Theiler, J. (1990) Estimating Fractal Dimension. JOSA A, 7, 1055-1073. http://dx.doi.org/10.1364/JOSAA.7.001055
|
[11]
|
Taylor C. and Taylor, S.J. (1991) Estimating the Dimension of a Fractal. Journal of the Royal Statistical Society. Series B (Methodological), 53, 353-364.
|
[12]
|
Allen, M., Brown, G.J. and Miles, N.J. (1995) Measurement of Boundary Fractal Dimensions: Review of Current Techniques. Powder Technology, 84, 1-14. http://dx.doi.org/10.1016/0032-5910(94)02967-S
|
[13]
|
Blachowski, A. and Ruebenbauer, K. (2009) Roughness Method to Estimate Fractal Dimension. Acta Physica Polonica A, 115, 636-640.
|
[14]
|
Girault, J., Kouame, D. and Ouahabi, A. (2010) Analytical Formulation of the Fractal Dimension of Filtered Stochastic Signals. Signal Processing, 90, 2690-2697. http://dx.doi.org/10.1016/j.sigpro.2010.03.019
|
[15]
|
Loeve, M. (1963) Probability Theory. D. Van N. Company, London.
|
[16]
|
Soong, T. (1973) Random Differential Equations in Science and Engineering. Academic Press, New York.
|
[17]
|
Jodar, L., Cortez, J. and Villafuerte, L. (2007) Mean Square Numerical Solution of Random Differential Equations: Facts and Possibilities. Computers and Mathematics with Applications, 53, 1098-1106. http://dx.doi.org/10.1016/j.camwa.2006.05.030
|
[18]
|
Jodar, L. and Villafuerte, L. (2007) Numerical Solution of Random Differential Equations: A Mean Square Approach. Mathematical and Computer Modelling, 45, 757-765. http://dx.doi.org/10.1016/j.mcm.2006.07.017
|
[19]
|
Marin, F. and Laniado, H. (2014) Convergence of Analytical Stochastic Processes in Mean Square. 1-9. http://repository.eafit.edu.co/handle/10784/1523
|
[20]
|
Agarwall, R. (1992) Difference Equations and Inequalities. Marcel Dekker, New York.
|
[21]
|
Barnsley, M. (1988) Fractals Everywhere. Academic Press, London.
|
[22]
|
Le Tavernier, E. (1998) La methode de Higuchi pour la dimension fractal. Signal Processing, 65, 115-128. http://dx.doi.org/10.1016/S0165-1684(97)00211-9
|
[23]
|
Uhlenbeck, G. and Ornstein, L. (1930) On the Theory of the Brownian Motion. Physical Review, 36, 823-841. http://dx.doi.org/10.1103/PhysRev.36.823
|
[24]
|
Marin, F. and Palacio, J. (2013) Gaussian Estimation of One-Factor Mean Reversion Processes. Journal of Probability and Statistics, 2013, 10 p.
|