Fractional Langevin Equation in Quantum Systems with Memory Effect

Abstract

In this paper, we introduce the fractional generalized Langevin equation (FGLE) in quantum systems with memory effect. For a particular form of memory kernel that characterizes the quantum system, we obtain the analytical solution of the FGLE in terms of the two-parameter Mittag-Leffler function. Based on this solution, we study the time evolution of this system including the qubit excited-state energy, polarization and von Neumann entropy. Memory effect of this system is observed directly through the trapping states of these dynamics.

Share and Cite:

Wu, J. , Huang, H. , Cheng, S. and Hsieh, W. (2014) Fractional Langevin Equation in Quantum Systems with Memory Effect. Applied Mathematics, 5, 1741-1749. doi: 10.4236/am.2014.512167.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Zaslavsky, G.M. (2005) Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford.
[2] Metzler, R. and Klafter, J. (2000) The Random Walks Guide to Anomalous Diffusion: A Fractional Dynamics Approach. Physics Reports, 339, 1-77.
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
[3] Zaslavsky, G.M. (2002) Chaos, Fractional Kinetics, and Anomalous Transport. Physics Reports, 371, 461-580.
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
[4] Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, Inc., Hoboken.
[5] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London.
[6] Iomin, A. (2009) Fractional-Time Quantum Dynamics. Physical Review E, 80, Article ID: 022103.
http://dx.doi.org/10.1103/PhysRevE.80.022103
[7] Wu, J.-N., Huang, C.-H., Cheng, S.-C. and Hsieh, W.-F. (2010) Spontaneous Emission from a Two-Level Atom in Anisotropic One-Band Photonic Crystals: A Fractional Calculus Approach. Physical Review A, 81, Article ID: 023827.
http://dx.doi.org/10.1103/PhysRevA.81.023827
[8] Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.-A. and Garraway, B.M. (2009) Sudden Death and Sudden Birth of Entanglement in Common Structured Reservoirs. Physical Review A, 79, Article ID: 042302.
http://dx.doi.org/10.1103/PhysRevA.79.042302
[9] Maniscalco, S. and Francica, F., Zaffino, R.L., Lo, Gullo, N. and Plastina, F. (2008) Protecting Entanglement via the Quantum Zeno Effect. Physical Review Letters, 100, Article ID: 090503.
http://dx.doi.org/10.1103/PhysRevLett.100.090503
[10] Bellomo, B., Lo Franco, R., Maniscalco, S. and Compagno, G. (2008) Entanglement Trapping in Structured Environments. Physical Review A, 78, Article ID: 060302(R).
[11] Jorgensen, M.R., Galusha, J.W. and Bartl, M.H. (2011) Strongly Modified Spontaneous Emission Rates in Diamond-Structured Photonic Crystals. Physical Review Letters, 107, 143902.1-143902.4.
[12] John, S. and Quang, T. (1994) Spontaneous Emission near the Edge of a Photonic Band Gap. Physical Review A, 50, 1764. http://dx.doi.org/10.1103/PhysRevA.50.1764

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.