[1]
|
The Diabetes Control and Complications Trial (DCCT) Research Group (1993) The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in the Diabetes Control in Insulin Dependent Diabetes Mellitus. The New England Journal of Medicine, 329, 977-986. http://dx.doi.org/10.1056/NEJM199309303291401
|
[2]
|
UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive Blood-Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes. The Lancet, 352, 837-853. http://dx.doi.org/10.1016/S0140-6736(98)07019-6
|
[3]
|
Turner, R.C., Cull, C.A., Frighi, V., et al. (1999) Glycemic Control with Diet, Sulfonylurea, Metformin, or Insulin in Patients with Type 2 Diabetes Mellitus: Progressive Requirement for Multiple Therapies. UK Prospective Diabetes Study (UKPDS) Group. The Journal of the American Medical Association, 281, 2005-2012. http://dx.doi.org/10.1001/jama.281.21.2005
|
[4]
|
UK Prospective Diabetes Study Group (1995) UK Prospective Diabetes Study 16: Overview of 6 Years’ Therapy of Type II Diabetes: A Progressive Disease. Diabetes, 44, 1249-1258. http://dx.doi.org/10.2337/diab.44.11.1249
|
[5]
|
Yale, J.F., Valiquett, T.R., Ghazzi, M.N., et al. (2001) The Effect of a Thiazolidinedione Drug, Troglitazone, on Glycemia in Patients with Type 2 Diabetes Mellitus Poorly Controlled with Sulfonylurea and Metformin. A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Annals of Internal Medicine, 134, 737-745. http://dx.doi.org/10.7326/0003-4819-134-9_Part_1-200105010-00010
|
[6]
|
Cook, M.N., Girman, C.J., Stein, P.P., et al. (2005) Glycemic Control Continues to Deteriorate after Sulfonylureas Are Added to Metformin among Patients with Type 2 Diabetes. Diabetes Care, 28, 995-1000. http://dx.doi.org/10.2337/diacare.28.5.995
|
[7]
|
Robertson, R.P. (2004) Chronic Oxidative Stress as a Central Mechanism for Glucose Toxicity in Pancreatic Islet Beta Cells in Diabetes. The Journal of Biological Chemistry, 279, 42351-42354. http://dx.doi.org/10.1074/jbc.R400019200
|
[8]
|
Robertson, R.P. and Harmon, J.S. (2006) Diabetes, Glucose Toxicity, and Oxidative Stress: A Case of Double Jeopardy for the Pancreatic Islet Beta Cell. Free Radical Biology and Medicine, 41, 177-184. http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.030
|
[9]
|
Grankvist, K., Marklund, S.L. and Taljedal, I.B. (1981) CuZn-Superoxide Dismutase, Mn-Superoxide Dismutase, Catalase and Glutathione Peroxidase in Pancreatic Islets and Other Tissues in the Mouse. Biochemical Journal, 199, 393-398.
|
[10]
|
Kajimoto, Y. and Kaneto, H. (2004) Role of Oxidative Stress in Pancreatic Beta-Cell Dysfunction. Annals of the New York Academy of Sciences, 1011, 168-176. http://dx.doi.org/10.1196/annals.1293.017
|
[11]
|
Emami, J., Pasutto, F.M., Mercer, J.R., et al. (1999) Inhibition of Insulin Metabolism by Hydroxychloroquine and Its Enantiomers in Cytosolic Fraction of Liver Homogenates from Healthy and Diabetic Rats. Life Sciences, 64, 325-335. http://dx.doi.org/10.1016/S0024-3205(98)00568-2
|
[12]
|
Petri, M. (1996) Hydroxychloroquine Use in the Baltimore Lupus Cohort: Effects on Lipids, Glucose and Thrombosis. Lupus, 5, 16-22. http://dx.doi.org/10.1177/096120339600500105
|
[13]
|
Wasko, M.C.M., Hubert, H.B. and Lingala, V.B. (2007) Hydroxychloroquine and Risk of Diabetes in Patients with Rheumatoid Arthritis. The Journal of the American Medical Association, 298, 187-193. http://dx.doi.org/10.1001/jama.298.2.187
|
[14]
|
Iams, S.G. and Wexler, B.C. (1977) Alloxan Diabetes in Spontaneously Hypertensive Rats: Gravimetric, Metabolic and Histopathological Alterations. British Journal of Experimental Pathology, 58, 177-199.
|
[15]
|
Halliwell, B. and Gutteridge, J.M.C. (1989) Free Radicals in Biology and Medicine. 2nd Edition, Clarendon Press, Oxford.
|
[16]
|
Krentz, A.J. and Bailey, C.J. (2005) Oral Antidiabetic Agents: Current Role in Type 2 Diabetes Mellitus. Drugs, 65, 385-411. http://dx.doi.org/10.2165/00003495-200565030-00005
|
[17]
|
Wiernsperger, N.F. and Bailey, C.J. (1999) The Antihyperglycaemic Effect of Metformin: Therapeutic and Cellular Mechanisms. Drugs, 58, 31-39. http://dx.doi.org/10.2165/00003495-199958001-00009
|
[18]
|
Cynober, L., Aussel, C., Vaubourdolle, M., et al. (1987) Modulation of Insulin Action on 2-Deoxyglucose Uptake by Chloroquine in Chick Embryo Fibroblast. Diabetes, 36, 27-32. http://dx.doi.org/10.2337/diab.36.1.27
|
[19]
|
Asamoah, K.A., Robb, D.A. and Furman, B.L. (1990) Chronic Chloroquine Treatment Enhances Insulin Release in Rats. Diabetes Research and Clinical Practice, 9, 273-278. http://dx.doi.org/10.1016/0168-8227(90)90056-Y
|
[20]
|
Emami, J., Pasutto, F.M., Mercer, J.R., et al. (1998) Inhibition of Insulin Metabolism by Hydroxychloroquine and Its Enantiomers in Cytosolic Fraction of Liver Homogenates from Healthy and Diabetic Rats. Life Sciences, 64, 325-335. http://dx.doi.org/10.1016/S0024-3205(98)00568-2
|
[21]
|
Emami, J., Gerstein, H.C., Pasutto, F.M. et al. (1999) Insulin Sparing Effect of Hydroxychloroquinein Diabetic Rats Is Concentration Dependent. Canadian Journal of Physiology and Pharmacology, 77, 118-123. http://dx.doi.org/10.1139/y98-146
|
[22]
|
Ohno, T., Horio, F., Tanaka, S., et al. (2000) Fatty Liver and Hyperlipidemia in IDDM (Insulin-Dependent Diabetes Mellitus) of Streptozotocin-Treated Shrews. Life Sciences, 66, 125-131. http://dx.doi.org/10.1016/S0024-3205(99)00570-6
|
[23]
|
Coppack, S.W., Jensen, M.D. and Miles, J.M. (1994) In Vivo Regulation of Lipolysis in Humans. Journal of Lipid Resesrch, 35, 177-193.
|
[24]
|
Winocour, P.H., Durrington, P.N., Bhatnagar, D., et al. (1992) Abnormalities of VLDL, IDL, and LDL Characterize Insulin-Dependent Diabetes Mellitus. Arteriosclerosis, Thrombosis and Vascular Biology, 12, 920-928. http://dx.doi.org/10.1161/01.ATV.12.8.920
|
[25]
|
Verges, B.L. (1999) Dyslipidemia in Diabetes Mellitus. Review of the Main Lipoprotein Abnormalities and Their Consequences on the Development of Atherogenesis. Diabetes and Metabolism, 25, 32-40.
|
[26]
|
Defronzo, R.A. and Goodman, A.M. (1995) Efficacy of Metformin in Patient with Non-Insulin-Dependent Diabetes Mellitus. The New England Journal of Medicine, 333, 541-549. http://dx.doi.org/10.1056/NEJM199508313330902
|
[27]
|
Chehade, J.M. and Mooradian, A.D. (2000) A Rational Approach to Drug Therapy of Type-2 Diabetes Mellitus. Drugs, 60, 95-113. http://dx.doi.org/10.2165/00003495-200060010-00006
|
[28]
|
Grover, J.K., Vats, V. and Rathi, S.S. (2000) Antihyperglycemic Effect of Eugenia jambolana and Tinosporacardifolia in Experimental Diabetes and Their Effects on Key Metabolic Enzymes Involved in Carbohydrate Metabolism. Journal of Ethnopharmacology, 73, 461-470. http://dx.doi.org/10.1016/S0378-8741(00)00319-6
|
[29]
|
Gold, A.H. (1970) The Effect of Diabetes and Insulin on Liver Glycogen Synthetase Activation. The Journal of Biological Chemistry, 245, 903-905.
|
[30]
|
Goel, R.K., Mahajan, M.P. and Kulkarni, S.K. (2004) Evaluation of Antihyperglycemic Activity of Some Novel Monocyclic Beta Lactams. Journal of Pharmacy and Pharmaceutical Sciences, 7, 80-83.
|