Monitoring Brain and Spinal Cord Metabolism and Function

DOI: 10.4236/ojanes.2014.46020   PDF   HTML     3,443 Downloads   4,746 Views   Citations

Abstract

Monitoring the metabolism and function of the central nervous system not only is an old idea but also is a topic that is of increasing interest to the technological evolution. Beside the optimization of cerebral and spinal cord perfusion and the preservation of vasoreactivity to ensure the viability of cerebral tissues and structures, we want to know more and more about the real intimate situation of these organs in real time at the patient’s bedside. To this end, several tracks have been explored during the two last decades, leading to the development of numerous concepts and the conception of various monitoring systems. One of the main problems is to characterize the respective strong points and weaknesses of those ones and to conclude regarding their individual relevance and value in current clinical practice. It is more and more clear that the combination of different categories of monitoring is a way to try to find the most valuable technological compromise, to increase the chance of prediction or of early detection of intercurrent deleterious events corresponding to the concept of multimodality. The intraoperative period and the intensive care goals and targets are appreciably different. This is the reason for the attempt to define different and distinct sets of goals and targets for the intraoperative anesthetic setting and for the intensive care unit.

Share and Cite:

Pandin, P. , Renard, M. , Bianchini, A. , Desjardin, P. and Obbergh, L. (2014) Monitoring Brain and Spinal Cord Metabolism and Function. Open Journal of Anesthesiology, 4, 131-152. doi: 10.4236/ojanes.2014.46020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sebel, P. and Fitch, W. (1994) Monitoring the Central Nervous System. Blackwell Science, London, 479.
[2] Grundy, B.L. (1982) Monitoring of Sensory Evoked Potentials during Neurosurgical Operations: Methods and Applications. Neurosurgery, 11, 556-575.
http://dx.doi.org/10.1227/00006123-198210000-00020
[3] Grundy, B.L. (1983) Intraoperative Monitoring of Sensory-Evoked Potentials Anesthesiology, 58, 72-87.
http://dx.doi.org/10.1097/00000542-198301000-00011
[4] Grundy, B.L. (1984) Evoked Potentials in the Operating Rooms. Mount Sinai Journal of Medicine, 51, 585-591.
[5] Thornton, C., Catley, D.M., Jordan, C., Lehane, J.R., Royston, D. and Jones, J.G. (1983) Enflurane Anaesthesia Causes Graded Changes in the Brainstem and the Early Cortical Auditory Evoked Response in Man. British Journal of Anaesthesia, 55, 479-486.
http://dx.doi.org/10.1093/bja/55.6.479
[6] Thornton, C., Heneghan, C.P., James, M.F. and Jones, J.G. (1984) Effects of Halothane or Enflurane with Controlled Ventilation on Auditory Evoked Potentials. British Journal of Anaesthesia, 56, 315-323.
http://dx.doi.org/10.1093/bja/56.4.315
[7] Lee, S.H. and Dan, Y. (2012) Neuromodulation of Brain States. Neuron, 76, 209-222.
http://dx.doi.org/10.1016/j.neuron.2012.09.012
[8] Pandin, P. and Dewitte, O. (2007) Open Low-Field Intraoperative MRI for Transsphenoidal Pituitary Surgery. Anesthesia & Analgesia, 105, 886.
http://dx.doi.org/10.1213/01.ane.0000268558.02855.73
[9] Vespa, P. (2005) Continuous EEG Monitoring for the Detection of Seizures in Traumatic Brain Injury, Infarction, and Intracerebral Hemorrhage: “To Detect and Protect”. Journal of Clinical Neurophysiology, 22, 99-106.
http://dx.doi.org/10.1097/01.WNP.0000154919.54202.E0
[10] Vespa, P. (2005) Multimodality Monitoring and Telemonitoring in Neurocritical Care: From Microdialysis to Robotic Telepresence. Current Opinion in Critical Care, 11, 133-138.
http://dx.doi.org/10.1097/01.ccx.0000155353.01489.58
[11] Guérit, J.M., Amantini, A., Amodio, P., Andersen, K.V., Butler, S., de Weerd, A., et al. (2009) Consensus on the Use of Neurophysiological Tests in the Intensive Care Unit (ICU): Electroencephalogram (EEG), Evoked Potentials (EP), and Electroneuromyography (ENMG). Clinical Neurophysiology, 39, 71-83.
http://dx.doi.org/10.1016/j.neucli.2009.03.002
[12] Kurtz, P., Hanafy, K.A. and Claassen, J. (2009) Continuous EEG Monitoring: Is It Ready for Prime Time? Current Opinion in Critical Care, 15, 99-109.
http://dx.doi.org/10.1097/MCC.0b013e3283294947
[13] Tamaki, T. and Kubota, S. (2007) History of the Development of Intraoperative Spinal Cord Monitoring. European Spine Journal, 16, S140-S146.
http://dx.doi.org/10.1007/s00586-007-0416-9
[14] Nash Jr., C.L., Lorig, R.A., Schatzinger, L.A. and Brown, R.H. (1977) Spinal Cord Monitoring during Operative Treatment of the Spine. Clinical Orthopaedics and Related Research, 126, 100-105.
[15] Coles, J.G., Wilson, G.J., Sima, A.F., Klement, P. and Tait, G.A. (1982) Intraoperative Detection of Spinal Cord Ischemia Using Somatosensory Cortical Evoked Potentials during Thoracic Aortic Occlusion. The Annals of Thoracic Surgery, 34, 299-306.
http://dx.doi.org/10.1016/S0003-4975(10)62499-X
[16] Oddo, M., Villa, F. and Citerio, G. (2012) Brain Multimodality Monitoring: An Update. Current Opinion in Critical Care, 18, 111-118.
http://dx.doi.org/10.1016/S0003-4975(10)62499-X
[17] Grocott, H.P., Davie, S. and Fedorow, C. (2010) Monitoring of Brain Function in Anesthesia and Intensive Care. Current Opinion in Anaesthesiology, 23, 759-764.
http://dx.doi.org/10.1097/ACO.0b013e3283404641
[18] John, E.R. (2002) The Neurophysics of Consciousness. Brain Research Reviews, 39, 1-28.
http://dx.doi.org/10.1016/S0165-0173(02)00142-X
[19] John, E.R. and Prichep, L.S. (2005) The Anesthetic Cascade: A Theory of How Anesthesia Suppresses Consciousness. Anesthesiology, 102, 447-471.
http://dx.doi.org/10.1097/00000542-200502000-00030
[20] John, E.R. and Prichep, L.S. (2006) The Relevance of QEEG to the Evaluation of Behavioral Disorders and Pharmaco-logical Interventions. Clinical EEG and Neuroscience, 37, 135-143.
http://dx.doi.org/10.1177/155005940603700210
[21] Nuwer, M.R. (1994) Electroencephalograms and Evoked Potentials. Monitoring Cerebral Function in the Neurosurgical intensive Care Unit. Neurosurgery Clinics of North America, 5, 647-659.
[22] Nuwer, M. (1997) Assessment of Digital EEG, Quantitative EEG, and EEG Brain Mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology, 49, 277-292.
http://dx.doi.org/10.1212/WNL.49.1.277
[23] Nuwer, M.R. (2007) ICU EEG Monitoring: Nonconvulsive Seizures, Nomenclature, and Pathophysiology. Clinical Neurophysiology, 118, 1653-1654.
http://dx.doi.org/10.1016/j.clinph.2007.01.026
[24] Kochs, E., Bischoff, P., Pichlmeier, U. and Esch, S.J. (1994) Surgical Stimulation Induces Changes in Brain Electrical Activity during Isoflurane/Nitrous Oxide Anesthesia. A Topographic Electroencephalographic Analysis. Anesthesiology, 80, 1026-1034.
http://dx.doi.org/10.1097/00000542-199405000-00012
[25] Pandin, P., Van Cutsem, N., Tuna, T. and D’hollander, A. (2006) Bispectral Index Is a Topographically Dependent Variable in Patients Receiving Propofol Anaesthesia. British Journal of Anaesthesia, 97, 676-680.
http://dx.doi.org/10.1093/bja/ael235
[26] Rampil, I. (1998) A Primer for EEG Signal Processing in Anesthesia. Anesthesiology, 89, 980-1002.
http://dx.doi.org/10.1097/00000542-199810000-00023
[27] Jameson, L.C. and Sloan, T.B. (2006) Using EEG to Monitor Anesthesia Drug Effects during Surgery. Journal of Clinical Monitoring and Computing, 20, 445-472.
http://dx.doi.org/10.1007/s10877-006-9044-x
[28] Jameson, L.C. and Sloan, T.B. (2012) Neurophysiologic Monitoring in Neurosurgery. Anesthesiology Clinics, 30, 311-331.
http://dx.doi.org/10.1016/j.anclin.2012.05.005
[29] Jäntti, V. and Yli-Hankala, A. (2000) Neurophysiology of Anaesthesia. Supplements to Clinical Neurophysiology, 53, 84-88.
http://dx.doi.org/10.1016/S1567-424X(09)70142-4
[30] Guérit, J.M. (2000) The Usefulness of EEG, Exogeneous Evoked Potentials and Cognitive Evoked Potentials in the Acute Stage of Post-Anoxic and Post-Traumatic Coma. Acta Neurologica Belgica, 100, 229-236.
[31] Sloan, T.B. (1995) Electrophysiologic Monitoring in Head Injury. New Horizons, 3, 431-438.
[32] Vato, A., Bonzano, L., Chiappalone, M., Cicero, S., Morabito, F., Novellino, A., et al. (2004) Spike Manager: A New Tool for Spontaneous and Evoked Neuronal Networks Activity Characterization. Neurocomputing, 58-60, 1153-1161.
http://dx.doi.org/10.1016/j.neucom.2004.01.180
[33] Pasternak, J.J. and Lanier, W.L. (2012) Neuroanesthesiology Update. Journal of Neurosurgical Anesthesiology, 24, 85-112.
http://dx.doi.org/10.1097/ANA.0b013e31824a8152
[34] Bratton, S.L., Chestnut, R.M., Ghajar, J., Hammond, F.F.M., Harris, O.A., Hartl, R., et al. (2007) Guidelines for the Management of Severe Traumatic Brain Injury. VI. Indications for Intracranial Pressure Monitoring. Journal of Neurotrauma, 24, S37-S44.
http://dx.doi.org/10.1089/neu.2007.9990
[35] Andrews, P.J. and Citerio, G. (2004) Intracranial Pressure. Part One: Historical Overview and Basic Concepts. Intensive Care Medicine, 30, 1730-1733.
[36] Citerio, G. and Andrews, P.J. (2004) Intracranial Pressure. Part Two: Clinical Applications and Technology. Intensive Care Medicine, 30, 1882-1885.
http://dx.doi.org/10.1007/s00134-004-2377-3
[37] Mokri, B. (2001) The Monro-Kellie Hypothesis. Neurology, 56, 1746-1748.
http://dx.doi.org/10.1212/WNL.56.12.1746
[38] Treggiari, M.M., Schutz, N., Yanez, N.D. and Romand, J.A. (2007) Role of Intracranial Pressure Values and Patterns in Predicting Outcome in Traumatic Brain Injury: A Systematic Review. Neurocritical Care, 6, 104-112.
http://dx.doi.org/10.1007/s12028-007-0012-1
[39] Kirkman, M.A. and Smith, M. (2014) Intracranial Pressure Monitoring, Cerebral Perfusion Pressure Estimation, and ICP/CPP-Guided Therapy: A Standard of Care or Optional Extra after Brain Injury? British Journal of Anaesthesia, 112, 35-46.
http://dx.doi.org/10.1093/bja/aet418
[40] Chesnut, R.M., Tembin, N., Carney, N., Dikmen, S., Rondina, C., Videtta, W., et al. (2012) A Trial of Intracranial-Pressure Monitoring in Traumatic Brain Injury. The New England Journal of Medicine, 367, 2471-2481.
http://dx.doi.org/10.1056/NEJMoa1207363
[41] Kristiansson, H., Nissborg, E., Bartek, J., Andresen, M., Reinstrup, P. and Romner, B. (2013) Measuring Elevated Intracranial Pressure through Noninvasive Methods: A Review of the Literature. Journal of Neurosurgical Anesthesiology, 25, 372-385.
http://dx.doi.org/10.1097/ANA.0b013e31829795ce
[42] Manwaring, P.K., Moodie, K.L., Hartov, A., Manwaring, K.H. and Halter, R.J. (2013) Intracranial Electrical Impedance Tomography: A Method of Continuous Monitoring in an Animal Model of Head Trauma. Anesthesia & Analgesi, 117, 866-875.
http://dx.doi.org/10.1213/ANE.0b013e318290c7b7
[43] Bouzat, P., Francony, G., Fauvage, B. and Payen, J.F. (2010) Transcranial Doppler Pulsatility Index for Initial Management of Brain-Injured Patients. Neurosurgery, 67, E1863-E1864.
http://dx.doi.org/10.1227/NEU.0b013e3181f932e7
[44] Rajajee, V., Vanaman, M., Fletcher, J.J. and Jacobs, T.L. (2011) Optic Nerve Ultrasound for the Detection of Raised Intracranial Pressure. Neurocritical Care, 15, 506-515.
http://dx.doi.org/10.1007/s12028-011-9606-8
[45] Dubost, C., Le Gouez, A., Jouffroy, V., Roger-Christoph, S., Benhamou, D., Mercier, F.J., et al. (2012) Optic Nerve Sheath Diameter Used as Ultrasonographic Assessment of the Incidence of Raised Intracranial Pressure in Preeclampsia: A Pilot Study. Anesthesiology, 116, 1066-1071.
http://dx.doi.org/10.1097/ALN.0b013e318246ea1a
[46] Voss, S.E., Horton, N.J., Tabucchi, T.H., Folowosele, F.O. and Shera, C.A. (2006) Posture-Indiced Changes in Distorsion-Product Otoacoustic Emissions and the Potential for Noninvasive Monitoring of Intracranial Pressure. Neurocritical Care, 4, 251-257.
http://dx.doi.org/10.1385/NCC:4:3:251
[47] Lin, A.P., Liao, H.J., Merugumala, S.K., Prabhu, S.P., Meehan, W.P. and Ross, B.D. (2012) Metabolic Imaging of Mild Traumatic Brain Injury. Brain Imaging and Behavior, 6, 208-223.
http://dx.doi.org/10.1007/s11682-012-9181-4
[48] Stam, C.J. and van Straaten, E.C. (2012) The Organization of Physiological Brain Networks. Clinical Neurophysiology, 123, 1067-1087.
http://dx.doi.org/10.1016/j.clinph.2012.01.011
[49] Pandin P. (2004) The Neuro-Anaesthesiology Assisted by the Electroencephalogram. Annales Françaises d’Anesthésie et de Réanimation, 23, 395-403.
http://dx.doi.org/10.1016/j.annfar.2004.01.006
[50] Abend, N.S., Dlugos, D.J., Hahn, C.D., Hirsch, L.J. and Herman, S.T. (2010) Use of EEG Monitoring and Management of Nonconvulsive Seizures in Critically Ill Patients: A Survey of Neurologists. Neurocritical Care, 12, 382-389.
http://dx.doi.org/10.1007/s12028-010-9337-2
[51] Rossetti, A.O. and Oddo, M. (2010) The Neuro-ICU Patient and Electroencephalography Paroxysms: If and When to Treat. Current Opinion in Critical Care, 16, 105-109.
http://dx.doi.org/10.1097/MCC.0b013e3283374b5b
[52] Vespa, P.M., Miller, C., McArthur, D., Eliseo, M., Etchepare, M., Hirt, D., et al. (2007) Nonconvulsive Electrographic Seizures after Traumatic Brain Injury Result in a Delayed, Prolonged Increase in Intracranial Pressure and Metabolic Crisis. Critical Care Medicine, 35, 2830-2836.
http://dx.doi.org/10.1097/01.CCM.0000295667.66853.BC
[53] Vespa, P.M., McArthur, D.L., Xu, Y., Eliseo, M., Etchepare, M., Dinov, I., et al. (2010) Nonconvulsive Seizures after Traumatic Brain Injury ARE Associated with Hippocampal Atrophy. Neurology, 75, 792-798.
http://dx.doi.org/10.1212/WNL.0b013e3181f07334
[54] Friedman, D., Claassen, J. and Hirsch, L.J. (2009) Continuous Electroencephalogram Monitoring in the Intensive Care Unit. Anesthesia & Analgesia, 109, 506-523.
http://dx.doi.org/10.1213/ane.0b013e3181a9d8b5
[55] Olivecrona, M., Zetterlund, B., Rodling-WahlstrÖm, M., Naredi, S. and Koskinen, L.O.D. (2009) Absence of Electroencephalographic Seizure Activity in Patients Treated for Head Injury with an Intracranial Pressure-Targeted Therapy. Journal of Neurosurgery, 110, 300-305.
http://dx.doi.org/10.3171/2008.4.17538
[56] Naidech, A.M., Garg, R.K., Liebling, S., Levasseur, K., Macken, M.P., Schuele, S.U., et al. (2009) Anticonvulsant Use and Outcomes after Intracerebral Hemorrhage. Stroke, 40, 3810-3815.
http://dx.doi.org/10.1161/STROKEAHA.109.559948
[57] Claassen, J., Hirsch, L.J., Kreiter, K.T., Du, E.Y., Connolly, E.S., Emerson, R.G., et al. (2004) Quantitative Continuous EEG for Detecting Delayed Cerebral Ischemia in patients with Poor-Grade Subarachnoid Hemorrhage. Clinical Neurophysiology, 115, 2699-2710.
http://dx.doi.org/10.1016/j.clinph.2004.06.017
[58] Rathakrishnan, R., Gotman, J., Dubeau, F. and Angle, M. (2011) Using Continuous Electroencephalography in the Management of Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage. Neurocritical Care, 14, 152-161.
http://dx.doi.org/10.1007/s12028-010-9495-2
[59] Diedler, J., Sykora, M., Bast, T., Poli, S., Veltkamp, R., Mellado, P., et al. (2009) Quantitative EEG Correlates of Low Cerebral Perfusion in Severe Stroke. Neurocritical Care, 11, 210-216.
http://dx.doi.org/10.1007/s12028-009-9236-6
[60] Bosco, E., Marton, E., Feletti, A., Scarpa, B., Longatti, P., Zanatta, P., et al. (2011) Dynamic Monitors of Brain Function: A New Target in Neurointensive Care Unit. Critical Care, 15, R170.
http://dx.doi.org/10.1186/cc10315
[61] Rossetti, A.O., Oddo, M., Logroscino, G. and Kaplan, P.W. (2010) Prognostication after Cardiac Arrest and Hypothermia: A Prospective Study. Annals of Neurology, 67, 301-307.
[62] Rossetti, A.O., Urbano, L.A., Delodder, F., Kaplan, P.W. and Oddo, M. (2010) Prognostic Value of Continuous EEG Monitoring during Therapeutic Hypothermia after Cardiac Arrest. Critical Care, 14, R173.
http://dx.doi.org/10.1186/cc9276
[63] Rundgren, M., Westhall, E., Cronberg, T., Rosén, I. and Friberg, H. (2010) Continuous Amplitude-Integrated Electro encephalogram Predicts Outcome in Hypothermia-Treated Cardiac Arrest Patients. Critical Care Medicine, 38, 1838-1844.
http://dx.doi.org/10.1097/CCM.0b013e3181eaa1e7
[64] Coates, S., Clarke, A., Davison, G. and Patterson, V. (2012) Tele-EEG in the UK: A Report of over 1,000 Patients. Journal of Telemedicine and Telecare, 18, 243-246.
http://dx.doi.org/10.1258/jtt.2012.111003
[65] Palendeng, M.E., Zhang, Q., Pang, L. and Li, Y. (2012) EEG Data Compression to Monitor DoA in Telemedicine. Studies in Health Technology and Informatics, 178, 163-168.
[66] D’Arcy, R.C., Hajra, S.G., Liu, C., Sculthorpe, L.D. and Weaver, D.F. (2011) Towards Brain First-Aid: A Diagnostic Device for Conscious Awareness. IEEE Transactions on Biomedical Engineering, 58, 750-754.
http://dx.doi.org/10.1109/TBME.2010.2090880
[67] Lasierra, N., Alesanco, A., Campos, C., Caudevilla, E., Fernández, J. and García, J. (2009) Experience of a Real-Time Tele-EEG Service. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 5211-5214.
[68] Campos, C., Caudevilla, E., Alesanco, A., Lasierra, N., Martinez, O., Fernández, J., et al. (2012) Setting up a Telemedicine Service for Remote Real-Time Video-EEG Consultation in La Rioja (Spain). International Journal of Medical Informatics, 81, 404-414.
http://dx.doi.org/10.1016/j.ijmedinf.2012.01.006
[69] Toleikis, J.R. (2005) Intraoperative Monitoring Using Somatosensory Evoked Potentials. A Position Statement by the American Society of Neurophysiological Monitoring. Journal of Clinical Monitoring and Computing, 19, 241-258.
http://dx.doi.org/10.1007/s10877-005-4397-0
[70] American Electroencephalographic Society (1994) Guidelines for Intraoperative Monitoring of Sensory Evoked Potentials. Journal of Clinical Neurophysiology, 11, 77-87.
http://dx.doi.org/10.1097/00004691-199401000-00012
[71] American Electroencephalographic Society (1987) Guidelines for Intraoperative Monitoring of Sensory Evoked Potentials. Journal of Clinical Neurophysiology, 4, 397-416.
http://dx.doi.org/10.1097/00004691-198710000-00005
[72] Guerit, J.M. (1999) EEG and Evoked Potentials in the Intensive Care Unit. Neurophysiologie Clinique, 29, 301-317.
http://dx.doi.org/10.1016/S0987-7053(99)90044-8
[73] Sloan, T.B. and Heyer, E.J. (2002) Anesthesia for Intraoperative Neurophysiologic Monitoring of the Spinal Cord. Journal of Clinical Neurophysiology, 19, 430-443.
http://dx.doi.org/10.1097/00004691-200210000-00006
[74] Sloan, T. (2002) Anesthetics and the Brain. Anesthesiology Clinics of North America, 20, 265-292.
[75] International Organization of Societies for Electrophysiological Technology (OSET) (1999) Guidelines for Performing EEG and Evoked Potential Monitoring during Surgery. American Journal Of Electroneurodiagnostic Technology, 39, 257-277.
[76] Padberg, A.M., Russo, M.H., Lenke, L.G., Bridwell, K.H. and Komanetsky, R.M. (1996) Validity and Reliability of Spinal Cord Monitoring in Neuromuscular Spinal Deformity Surgery. Journal of Spinal Disorders, 9, 150-158.
http://dx.doi.org/10.1097/00002517-199604000-00012
[77] Pelosi, L., Lamb, J., Grevitt, M., Mehdian, S.M.H., Webb, J.K. and Blumhardt, L.D. (2002) Combined Monitoring of Motor and Somatosensory Evoked Potentials in Orthopaedic Spinal Surgery. Clinical Neurophysiology, 113, 1082-1091.
http://dx.doi.org/10.1016/S1388-2457(02)00027-5
[78] Guerit, J.M. (2010) Neurophysiological Testing in Neurocritical Care. Current Opinion in Critical Care, 16, 98-104.
http://dx.doi.org/10.1097/MCC.0b013e328337541a
[79] Kim, S.M., Kim, S.H., Seo, D.W. and Lee, K.W. (2013) Intraoperative Neurophysiologic Monitoring: Basic Principles and Recent Update. Journal of Korean Medical Science, 28, 1261-1269.
http://dx.doi.org/10.3346/jkms.2013.28.9.1261
[80] Hillered, L., Vespa, P.M. and Hovda, D.A. (2005) Translational Neurochemical Research in Acute Human Brain Injury: the Current Status and Potential Future for Cerebral Microdialysis. Journal of Neurotrauma, 22, 3-41.
http://dx.doi.org/10.1089/neu.2005.22.3
[81] Sarrafzadeh, A.S., Nagel, A., Czabanka, M., Denecke, T., Vajkoczy, P. and Plotkin, M. (2010) Imaging of Hypoxic-Ischemic Penumbra with (18)F-Fluoromisonidazole PET/CT and Measurement of Related Cerebral Metabolism in Aneurysmal Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 30, 36-45.
http://dx.doi.org/10.1038/jcbfm.2009.199
[82] Adamides, A.A., Rosenfeldt, F.L., Winter, C.D., Pratt, N.M., Tippett, N.J., Lewis, P.M., et al. (2009) Brain Tissue Lactate Elevations Predict Episodes of Intracranial Hypertension in Patients with Traumatic Brain Injury. Journal of the American College of Surgeons, 209, 531-539.
http://dx.doi.org/10.1016/j.jamcollsurg.2009.05.028
[83] Oddo, M., Schmidt, J.M., Carrera, E., Badjatia, N., Connolly, E.S., Presciutti, M., et al. (2008) Impact of Tight Glycemic Control on Cerebral Glucose Metabolism after Severe Brain Injury: A Microdialysis Study. Critical Care Medicine, 36, 3233-3238.
[84] Meierhans, R., Béchir, M., Ludwig, S., Sommerfeld, J., Brandi, G., Haberthür, C., et al. (2010) Brain Metabolism Is Significantly Impaired at Blood Glucose below 6mM and Brain Glucose Below 1mM in Patients with Severe Traumatic Brain Injury. Critical Care, 14, R13.
http://dx.doi.org/10.1186/cc8869
[85] Ko, S.B., Choi, H.A., Parikh, G., Helbok, R., Schmidt, J.M., Lee, K., et al. (2011) Multimodality Monitoring for Cerebral Perfusion Pressure Optimization in Comatose Patients with Intracerebral Hemorrhage. Stroke, 42, 3087-3092.
http://dx.doi.org/10.1161/STROKEAHA.111.623165
[86] Schmidt, J.M., Ko, S.B., Helbok, R., Kurtz, P., Stuart, R.M., Presciutti, M., et al. (2011) Cerebral Perfusion Pressure Thresholds for Brain Tissue Hypoxia and Metabolic Crisis after Poor-Grade Subarachnoid Hemorrhage. Stroke, 42, 1351-1356.
http://dx.doi.org/10.1161/STROKEAHA.110.596874
[87] Oddo, M., Milby, A., Chen, I., Frangos, S., MacMurtrie, E., Maloney-Wilensky, E., et al. (2009) Hemoglobin Concentration and Cerebral Metabolism in Patients with Aneurysmal Subarachnoid Hemorrhage. Stroke, 40, 1275-1281.
http://dx.doi.org/10.1161/STROKEAHA.110.596874
[88] Diringer, M.N., Bleck, T.P., Claude Hemphill 3rd, J., Menon, D., Shutter, L., Vespa, P., et al. (2011) Critical Care Management of Patients Following Aneurysmal Subarachnoid Hemorrhage: Recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocritical Care, 15, 211-240.
http://dx.doi.org/10.1007/s12028-011-9605-9
[89] Bellander, B.M., Cantais, E., Enblad, P., Hutchinson, P., NordstrÖm, C.H., Robertson, C., et al. (2004) Consensus Meeting on Microdialysis in Neurointensive Care. Intensive Care Medicine, 30, 2166-2169.
http://dx.doi.org/10.1007/s00134-004-2461-8
[90] Andrews, P.J., Citerio, G., Longhi, L., Polderman, K., Sahuquillo, J. and Vajkoczy, P. (2008) NICEM Consensus on Neurological Monitoring in Acute Neurological Disease. Intensive Care Medicine, 34, 1362-1370.
http://dx.doi.org/10.1007/s00134-008-1103-y
[91] Timofeev, I., Carpenter, K.L., Nortje, J., Al-Rawi, P.G., O’Connell, M.T., Czosnyka, M., et al. (2011) Cerebral Extracellular Chemistry and Outcome Following Traumatic Brain Injury: A Microdialysis Study of 223 Patients. Brain, 134, 484-494.
http://dx.doi.org/10.1093/brain/awq353
[92] Poca, M.A., Sahuquillo, J., Vilalta, A., Rios, J.D.L., Robles, A. and Exposito, L. (2006) Percutaneous Implantation of Cerebral Microdialysis Catheters by Twist-Drill Craniostomy in Neurocritical Patients: Description of the Technique and Results of a Feasibility Study in 97 Patients. Journal of Neurotrauma, 23, 1510-1517.
http://dx.doi.org/10.1089/neu.2006.23.1510
[93] Verweij, B.H., Amelink, G.J. and Muizelaar, J.P. (2007) Current Concepts of Cerebral Oxygen Transport and Energy Metabolism after Severe Traumatic Brain Injury. Progress in Brain Research, 161, 111-124.
http://dx.doi.org/10.1016/S0079-6123(06)61008-X
[94] Feldman, Z. and Robertson, C.S. (1997) Monitoring of Cerebral Hemodynamics with Jugular Bulb Catheters. Critical Care Clinics, 13, 51-77.
http://dx.doi.org/10.1016/S0749-0704(05)70296-7
[95] Macmillan, C.S. and Andrews, P.J. (2000) Cerebrovenous Oxygen Saturation Monitoring Considerations and Clinical Relevance. Intensive Care Medicine, 26, 1028-1036.
http://dx.doi.org/10.1007/s001340051315
[96] Reilly, P.L. (2001) Brain Injury: The Pathophysiology of the First Hours. “Talk and Die Revisited”. Journal of Clinical Neuroscience, 8, 398-403.
http://dx.doi.org/10.1054/jocn.2001.0916
[97] Rosenthal, G., Hemphill 3rd, J.C., Sorani, M., Martin, C., Morabito, D., Obrist, W.D., et al. (2008) Brain Tissue Oxygen Tension Is More Indicative of Oxygen Diffusion than Oxygen Delivery and Metabolism in Patients with Traumatic Brain Injury. Critical Care Medicine, 36, 1917-1924.
http://dx.doi.org/10.1097/CCM.0b013e3181743d77
[98] Jaeger, M., Dengl, M., Meixensberger, J. and Schuhmann, M.U. (2010) Effects of Cerebrovascular Pressure Reactivity-Guided Optimization of Cerebral Perfusion Pressure on Brain Tissue Oxygenation after Traumatic Brain Injury. Critical Care Medicine, 38, 1343-1347.
[99] Jaeger, M., Schuhmann, M.U., Soehle, M., Nagel, C. and Meixensberger, J. (2007) Continuous Monitoring of Cerebrovascular Autoregulation after Subarachnoid Hemorrhage by Brain Tissue Oxygen Pressure Reactivity and Its Relation to Delayed Cerebral Infarction. Stroke, 38, 981-986.
http://dx.doi.org/10.1161/01.STR.0000257964.65743.99
[100] Rangel-Castilla, L., Lara, L.R., Gopinath, S., Swank, P.R., Valadka, A. and Robertson, C. (2010) Cerebral Hemodynamic Effects of Acute Hyperoxia and Hyperventilation after Severe Traumatic Brain Injury. Journal of Neurotrauma, 27, 1853-1863.
http://dx.doi.org/10.1089/neu.2010.1339
[101] Oddo, M., Nduom, E., Frangos, S., MacKenzie, L., Chen, I., Maloney-Wilensky, E., et al. (2010) Acute Lung Injury Is an Independent Risk Factor for Brain Hypoxia after Severe Traumatic Brain Injury. Neurosurgery, 67, 338-344.
http://dx.doi.org/10.1227/01.NEU.0000371979.48809.D9
[102] Le Roux, P.D. (2011) Anemia and Transfusion after Subarachnoid Hemorrhage. Neurocritical Care, 15, 342-353.
http://dx.doi.org/10.1007/s12028-011-9582-z
[103] Maloney-Wilensky, E., Gracias, V., Itkin, A., Hoffman, K., Bloom, S., Yang, W., et al. (2009) Brain Tissue Oxygen and Outcome after Severe Traumatic Brain Injury: A Systematic Review. Critical Care Medicine, 37, 2057-2063.
[104] Oddo, M., Levine, J.M., Mackenzie, L., Frangos, S., Feihl, F., Kasner, S.E., et al. (2011) Brain Hypoxia Is Associated with Short-Term Outcome after Severe Traumatic Brain Injury Independent of Intracranial Hypertension and Low Cerebral Perfusion Pressure. Neurosurgery, 69, 1037-1045.
[105] Bratton, S.L., Chestnut, R.M., Ghajar, J., Hammond, F.M., Harris, O.A., Hartl, R., et al. (2007) Guidelines for the Management of Severe Traumatic Brain Injury. X. Brain Oxygen Monitoring and Thresholds. Journal of Neurotrauma, 24, S65-S70.
http://dx.doi.org/10.1089/neu.2007.9986
[106] Hänggi, D. (2011) Monitoring and Detection of Vasospasm II: EEG and Invasive Monitoring. Neurocritical Care, 15 318-323.
http://dx.doi.org/10.1007/s12028-011-9583-y
[107] Bohman, L.E., Heuer, G.G., Macyszyn, L., Maloney-Wilensky, E., Frangos, S., Le Roux, P.D., et al. (2011) Medical Management of Compromised Brain Oxygen in Patients with Severe Traumatic Brain Injury. Neurocritical Care, 14, 361-369.
http://dx.doi.org/10.1007/s12028-011-9526-7
[108] Nangunoori, R., Maloney-Wilensky, E., Stiefel, M., Park, S., Kofke, W.A., Levine, J.M., et al. (2012) Brain Tissue Oxygenbased Therapy and Outcome after Severe Traumatic Brain Injury: A Systematic Literature Review. Neurocritical Care, 17, 131-138.
http://dx.doi.org/10.1007/s12028-011-9621-9
[109] Hoshi, Y. (2007) Functional Near-Infrared Spectroscopy: Current Status and Future Prospects. Journal of Biomedical Optics, 12, Article ID 062106.
http://dx.doi.org/10.1117/1.2804911
[110] Rolfe, P. (2000) In Vivo Near-Infrared Spectroscopy. Annual Review of Biomedical Engineering, 2, 715-754.
http://dx.doi.org/10.1146/annurev.bioeng.2.1.715
[111] Wolf, M., Ferrari, M. and Quaresima, V. (2007) Progress of Near-Infrared Spectroscopy and Topography for Brain and Muscle Clinical Applications. Journal of Biomedical Optics, 12, Article ID: 062104.
http://dx.doi.org/10.1117/1.2804899
[112] Ghosh, A., Elwell, C. and Smith, M. (2012) Cerebral Near-Infrared Spectroscopy in Adults: A Work in Progress. Anesthesia & Analgesia, 115, 1373-1383.
http://dx.doi.org/10.1213/ANE.0b013e31826dd6a6
[113] Gazzaniga, M.S. (2000) Regional Differences in Cortical Organization. Science, 289, 1887-1888.
http://dx.doi.org/10.1126/science.289.5486.1887
[114] Gazzaniga, M.S. (2005) What’s on Your Mind? New Science, 186, 48-50.
[115] Ferrari, M., Wilson, D.A., Hanley, D.F., Hartmann, J.F. and Traystman, R.J. (1989) Determination of Cerebral Venous Hemoglobin Saturation by Derivative near Infrared Spectroscopy. Advances in Experimental Medicine and Biology, 248, 47-53.
http://dx.doi.org/10.1007/978-1-4684-5643-1_6
[116] Ferrari, M. and Quaresima, V. (2012) A Brief Review on the History of Human Functional Near-Infrared Spectroscopy (fNIRS) Development and Fields of Application. Neuroimage, 63, 921-935.
http://dx.doi.org/10.1016/j.neuroimage.2012.03.049
[117] Calderon-Arnulphi, M., Alaraj, A. and Slavin, K.V. (2009) Near Infrared Technology in Neuroscience: Past, Present and Future. Neurological Research, 31, 605-614.
http://dx.doi.org/10.1179/174313209X383286
[118] Wallois, F., Mahmoudzadeh, M., Patil, A. and Grebe, R. (2012) Usefulness of Simultaneous EEG-NIRS Recording in Language Studies. Brain and Language, 121, 110-123.
http://dx.doi.org/10.1016/j.bandl.2011.03.010
[119] Ito, H., Ibaraki, M., Kanno, I., Fukuda, H. and Miura, S. (2005) Changes in the Arterial Fraction of Human Cerebral Blood Volume during Hypercapnia and Hypocapnia Measured by Positron Emission Tomography. Journal of Cerebral Blood Flow & Metabolism, 25, 852-857.
http://dx.doi.org/10.1038/sj.jcbfm.9600076
[120] Thavasothy, M., Broadhead, M., Elwell, C., Peters, M. and Smith, M. (2002) A Comparison of Cerebral Oxygenation as Measured by the NIRO 300 and the INVOS 5100 Near-Infrared SPECTROPHOTOMETERS. Anaesthesia, 57, 999-1006.
http://dx.doi.org/10.1046/j.1365-2044.2002.02826.x
[121] Giustiniano, E., Alfano, A., Battistini, G.M., Gavazzeni, V., Spoto, M.R. and Cancellieri, F. (2010) Cerebral Oximetry during Carotid Clamping: Is Blood Pressure Raising Necessary? Journal of Cardiovascular Medicine, 11, 522-528.
http://dx.doi.org/10.2459/JCM.0b013e32833246e7
[122] Picton, P., Chambers, J., Shanks, A. and Dorje, P. (2010) The Influence of Inspired Oxygen Fraction and End-Tidal Carbon Dioxide on Post-Crossclamp Cerebral Oxygenation during Carotid Endarterectomy under General Anesthesia. Anesthesia & Analgesia, 110, 581-587.
http://dx.doi.org/10.1213/ANE.0b013e3181c5f160
[123] Stoneham, M.D., Lodi, O., de Beer, T.C. and Sear, J.W. (2008) Increased Oxygen Administration Improves Cerebral Oxygenation in Patients Undergoing Awake Carotid Surgery. Anesthesia & Analgesia, 107, 1670-1675.
http://dx.doi.org/10.1213/ane.0b013e318184d6c3
[124] Mauermann, W.J., Crepeau, A.Z., Pulido, J.N., Lynch, J.J., Lobbestael, A., Oderich, G.S., et al. (2013) Comparison of Electroencephalography and Cerebral Oximetry to Determine the Need for In-Line Arterial Shunting in Patients Undergoing Carotid Endarteriectomy. Journal of Cardiothoracic and Vascular Anesthesia, 27, 1253-1259.
http://dx.doi.org/10.1053/j.jvca.2013.02.013
[125] Pedrini, L., Magnoni, F., Sensi, L., Pisano, E., Ballestrazzi, M.S., Cirelli, M.R., et al. (2012) Is Near-Infrared Spectroscopy a Reliable Method to Eveluate Clamping Ischemia during Carotid Surgery? Stroke Research and Treatment, 2012, Article ID 156975.
[126] Uchino, H., Nakamura, T., Kuroda, S., Houkin, K., Murata, J. and Saito, H. (2012) Intraoperative Dual Monitoring during Carotid Endarterectomy Using Motor Evoked Potentials and Near-Infrared Spectroscopy. World Neurosurgery, 78, 651-657.
http://dx.doi.org/10.1016/j.wneu.2011.10.039
[127] Vohra, H.A., Modi, A. and Ohri, S.K. (2009) Does Use of Intra-Operative Cerebral Regional Oxygen Saturation Monitoring during Cardiac Surgery Lead to Improved Clinical Outcomes? Interactive CardioVasc Thoracic Surgery, 9, 318-322.
http://dx.doi.org/10.1510/icvts.2009.206367
[128] Murkin, J.M. and Arango, M. (2009) Near-Infrared Spectroscopy as an Index of Brain and Tissue Oxygenation. British Journal of Anaesthesia, 103, i3-i13.
http://dx.doi.org/10.1093/bja/aep299
[129] Selnes, O.A., Gottesman, R.F., Grega, M.A., Baumgartner, W.A., Zeger, S.L. and McKhann, G.M. (2012) Cognitive and Neurologic Outcomes after Coronary-Artery Bypass Surgery. The New England Journal of Medicine, 366, 250-257. http://dx.doi.org/10.1056/NEJMra1100109
[130] Smith, M. (2011) Shedding Light on the Adult Brain: A Review of the Clinical Applications of Near-Infrared Spectroscopy. Philosophical Transactions of the Royal Society A, 369, 4452-4469. http://dx.doi.org/10.1098/rsta.2011.0242
[131] D’Alessio, J.G., Rosenblum, M., Shea, K.P. and Freitas, D.G. (1995) A Retrospective Comparison of Interscalene Block and General Anesthesia for Ambulatory Surgery Shoulder Arthroscopy. Regional Anesthesia, 20, 62-68.
[132] Friedman, D.J., Parnes, N.Z., Zimmer, Z., Higgins, L.D. and Warner, J.J. (2009) Prevalence of Cerebrovascular Events during Shoulder Surgery and Association with Patient Position. Orthopedics, 32, 256.
[133] Dippmann, C., Winge, S. and Nielsen, H.B. (2010) Severe Cerebral Desaturation during Shoulder Arthroscopy in the Beach-Chair Position. Arthroscopy, 26, S148-S150.
http://dx.doi.org/10.1016/j.arthro.2010.03.012
[134] Fischer, G.W., Torrillo, T.M., Weiner, M.M. and Rosenblatt, M.A. (2009) The Use of Cerebral Oximetry as a Monitor of the Adequacy of Cerebral Perfusion in a Patient Undergoing Shoulder Surgery in the Beach Chair Position. Pain Practice, 9, 304-307.
http://dx.doi.org/10.1111/j.1533-2500.2009.00282.x
[135] Murphy, G.S., Szokol, J.W., Marymont, J.H., Greenberg, S.B., Avram, M.J., Vender, J., et al. (2010) Cerebral Oxygen Desaturation Events Assessed by Near-Infrared Spectroscopy during Shoulder Arthroscopy in the Beach Chair and Lateral Decubitus Positions. Anesthesia & Analgesia, 111, 496-505.
http://dx.doi.org/10.1213/ANE.0b013e3181e33bd9
[136] Li, Z., Wang, Y., Li, Y., Wang, Y., Li, J. and Zhang, L. (2010) Wavelet Analysis of Cerebral Oxygenation Signal Measured by Near Infrared Spectroscopy in Subjects with Cerebral Infarction. Microvascular Research, 80, 142-147.
http://dx.doi.org/10.1016/j.mvr.2010.02.004
[137] Leal-Noval, S.R., Cayuela, A., Arellano-Orden, V., Marín-Caballos, A., Padilla, V., Ferrándiz-Millón, C., et al. (2010) Invasive and Noninvasive Assessment of Cerebral Oxygenation in Patients with Severe Traumatic Brain Injury. Intensive Care Medicine, 36, 1309-1317.
http://dx.doi.org/10.1007/s00134-010-1920-7
[138] Debevec, T. and Mekjavic, I.B. (2012) Short Intermittent Hypoxic Exposures Augment Ventilation but Do Not Alter Regional Cerebral and Muscle Oxygenation during Hypoxic Exercise. Respiratory Physiology & Neurobiology, 181, 132-142.
http://dx.doi.org/10.1016/j.resp.2012.02.008
[139] Ferrari, M., Muthalib, M. and Quaresima, V. (2011) The Use of Near-Infrared Spectroscopy in Understanding Skeletal Muscle Physiology: Recent Developments. Philosophical Transactions of the Royal Society A, 28, 4577-4590.
http://dx.doi.org/10.1098/rsta.2011.0230
[140] Tax, N., Urlesberger, B., Binder, C., Pocivalnik, M., Morris, N. and Pichle, G. (2013) The Influence of Perinatal Asphyxia on Peripheral Oxygenation and Perfusion in Neonates. Early Human Development, 89, 483-486.
http://dx.doi.org/10.1016/j.earlhumdev.2013.03.011
[141] Mittnacht, A.J. (2010) Near Infrared Spectroscopy in Children at High Risk of Low Perfusion. Current Opinion in Anaesthesiology, 23, 342-347.
http://dx.doi.org/10.1097/ACO.0b013e3283393936
[142] Vajkoczy, P., Roth, H., Horn, P., Lucke, T., Thomé, C., Hubner, U., et al. (2000) Continuous Monitoring of Regional Cerebral Blood Flow: Experimental and Clinical Validation of a Novel Thermal Diffusion Microprobe. Journal of Neurosurgery, 93, 265-274.
http://dx.doi.org/10.3171/jns.2000.93.2.0265
[143] Muench, E., Horn, P., Bauhuf, C., Roth, H., Philipps, M., Hermann, P., et al. (2007) Effects of Hypervolemia and Hypertension on Regional Cerebral Blood Flow, Intracranial Pressure, and Brain Tissue Oxygenation after Subarachnoid Hemorrhage. Critical Care Medicine, 35, 1844-1851.
[144] Rosenthal, G., Sanchez-Mejia, R.O., Phan, N., Hemphill 3rd, J.C., Martin, C. and Manley, G.T. (2011) Incorporating a Parenchymal Thermal Diffusion Cerebral Blood Flow Probe in Bedside Assessment of Cerebral Autoregulation and Vasoreactivity in Patients with Severe Traumatic Brain Injury. Journal of Neurosurgery, 114, 62-70.
http://dx.doi.org/10.3171/2010.6.JNS091360
[145] Ponce, L.L., Pillai, S., Cruz, J., Li, X., Julia, H., Gopinath, S., et al. (2012) Position of the Probe Determines Prognostic Information of Brain Tissue PO2 in Severe Traumatic Brain Injury. Neurosurgery, 70, 1492-1502.
http://dx.doi.org/10.1227/NEU.0b013e31824ce933
[146] Helbok, R., Madineni, R.C., Schimedt, M.J., Kurtz, P., Fernandez, L., Ko, S.B., et al. (2011) Intracerebral Monitoring of Silent Infarcts after Subarachnoid Hemorrhage. Neurocritical Care, 14, 162-167.
http://dx.doi.org/10.1007/s12028-010-9472-9
[147] Maloney-Wilensky, E. and Le Roux, P. (2010) The Physiology Behind Direct Brain Oxygen Monitors and Practical Aspects of Their Use. Child’s Nervous System, 26, 419-430.
http://dx.doi.org/10.1007/s00381-009-1037-x
[148] Green, J.A., Pellegrini, D.C., Vanderkolk, W.E., Figueroa, B.E. and Eriksson, E.A. (2013) Goal Directed Brain Tissue Oxygen Monitoring versus Conventional Management in Truamtic Brain Injury: An Analysis of in Hospital Recovery. Neurocritical Care, 18, 20-25.
http://dx.doi.org/10.1007/s12028-012-9797-7
[149] Bouzat, P., Sala, N., Payen, J.F. and Oddo, M. (2013) Beyond Intracranial Pressure: Optimization of Cerebral Blood Flow, Oxygen, and Substrate Delivery after Traumatic Brain Injury. Annals of Intensive Care, 10, 3-23.
[150] Salerud, E.G. and Nilsson, G.E. (1986) Integrating Probe for Tissue Laser Doppler Flowmeters. Medical and Biological Engineering and Computing, 24, 415-419.
http://dx.doi.org/10.1007/BF02442697
[151] Salerud, E.G. and &OUMLberg, P.&ARING. (1987) Single-Fiber Laser Doppler Flowmetry. Medical and Biological Engineering and Computing, 25, 329-334.
http://dx.doi.org/10.1007/BF02447433
[152] Arbit, E., DiResta, G.R., Bedford, R.F., Shah, N.K. and Galicich, J.H. (1989) Intraoperative Measurement of Cerebral and Tumor Blood Flow with Laser-Doppler Flowmetry. Neurosurgery, 24, 166-170.
http://dx.doi.org/10.1227/00006123-198902000-00003
[153] Iadecola, C. and Reis, D.J. (1990) Continuous Monitoring of Cerebrocortical Blood Flow during Stimulation of the Cerebellar Fastigial Nucleus. Journal of Cerebral Blood Flow & Metabolism, 10, 608-617.
http://dx.doi.org/10.1038/jcbfm.1990.112
[154] Haberl, R.L., Heizer, M.L., Marmarou, A. and Ellis, E.F. (1989) Laser-Doppler Assessment of Brain Microcirculation: Effect of Systemic Alterations. American Journal of Physiology, Heart and Circulatory, 256, H1247-H1254.
[155] Haberl, R.L., Heizer, M.L. and Ellis, E.F. (1989) Laser-Doppler Assessment of Brain Microcirculation: Effect of Local Alterations. American Journal of Physiology, Heart and Circulatory, 256, H1255-H1260.
[156] Lindsberg, P.J., O’Neill, J.T., Paakkari, I.A., Hallenbeck, J.M. and Feuerstein, G. (1989) Validation of Laser-Doppler Flowmetry in Measurement of Spinal Cord Blood Flow. American Journal of Physiology, Heart and Circulatory, 257, H674-H680.
[157] Zweifel, C., Czonyka, M., Lavinio, A., Castellani, G., Kim, D.J., Carrera, E., et al. (2010) A Comparison Study of Cerebral Autoregulation Assessed with Transcranial Doppler and Cortical Laser Doppler Flowmetry. Neurological Research, 32, 425-428.
http://dx.doi.org/10.1179/174313209X459165
[158] Topcuoglu, M.A. (2012) Transcranial Doppler Ultrasound in Neurovascular Diseases: Diagnostic and Therapeutic Aspects. Journal of Neurochemistry, 123, 39-51.
http://dx.doi.org/10.1111/j.1471-4159.2012.07942.x
[159] Edmonds Jr., H.L., Isley, M.R., Sloan, T.B., Alexandrov, A.V. and Razumovsky, A.Y. (2011) American Society of Neurophysiologic Monitoring and American Society of Neuroimaging Joint Guidelines for Transcranial Doppler Ultrasonic Monitoring. Journal of Neuroimaging, 21, 177-183.
http://dx.doi.org/10.1111/j.1552-6569.2010.00471.x
[160] Kassah, M.Y., Majid, A., Farooq, M.U., Azhary, H., Hershey, L.A., Bednarczyk, E.M., et al. (2007) Transcranial Doppler: An Introduction for Primary Care Physicians. Journal of the American Board of Family Medicine, 20, 65-71.
http://dx.doi.org/10.3122/jabfm.2007.01.060128
[161] Greke, C., Neulen, A., Kantelhardt, S.R., Birkenmayer, A., Vollmer, F.C., Thiemann, I., et al. (2013) Image-Guided Transcranial Doppler Sonography for Monitoring of Defined Segments of Intracranial Arteries. Journal of Neurosurgical Anesthesiology, 25, 55-61.
http://dx.Doi.org/10.1097/ANA.0b013e31826b3d55
[162] Stendel, R., Pietilä, T., Al Hassan, A.A., Schillingb, A. and Brock, M. (2000) Intraoperative Microvascular Doppler Ultrasonography in Cerebral Aneurysm Surgery. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 29-35.
http://dx.doi.org/10.1136/jnnp.68.1.29

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.