[1]
|
Stock, J.H. and Watson, M.W. (2011) Dynamic Factor Models. In: Clements, M.P. and Hendry, D.F., Eds., Oxford Handbook of Economic Forecasting, Oxford University Press, Oxford, 35-60.
|
[2]
|
Geweke, J. (1977) The Dynamic Factor Analysis of Economic Time Series. In: Aigner, D.J. and Goldberger, A.S., Eds., Latent Variables in Socio-Economic Models 1, North-Holland, Amsterdam.
|
[3]
|
Dees, S., Pesaran, M.H., Smith, L.V. and Smith, R.P. (2010) Supply, Demand and Monetary Policy Shocks in a Multi-Country New Keynesian Model. ECB Working Paper Series, No. 1239.
|
[4]
|
Bai, J. and Ng, S. (2004) A Panic Attack on Unit Roots and Cointegration. Econometrica, 72, 1127-1177.
|
[5]
|
Bai, J.S. (2003) Inferential Theory for Factor Models of Large Dimensions. Econometrica, 71, 135-171. http://dx.doi.org/10.1111/1468-0262.00392
|
[6]
|
Bai, J.S. and Perron, P. (1998) Testing for and Estimation of Multiple Structural Changes. Econometrica, 66, 47-78. http://dx.doi.org/10.2307/2998540
|
[7]
|
Hamilton, J.D. (1989) A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 57, 357-384. http://dx.doi.org/10.2307/1912559
|
[8]
|
Enders, W. and Lee, J. (2012) The Flexible Fourier Form and Dickey-Fuller Type Unit Root Tests. Economics Letters, 117, 196-199. http://dx.doi.org/10.1016/j.econlet.2012.04.081
|
[9]
|
Baillie, R.T. and Morana, C. (2009) Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach. Journal of Economic Dynamics and Control, 33, 1577-1592. http://dx.doi.org/10.1016/j.jedc.2009.02.009
|
[10]
|
Baillie, R.T. and Morana, C. (2012) Adaptive ARFIMA Models with Applications to Inflation. Economic Modelling, 29, 2451-2459. http://dx.doi.org/10.1016/j.econmod.2012.07.011
|
[11]
|
González, A. and Teräsvirta, T. (2008) Modelling Autoregressive Processes with a Shifting Mean. Studies in Nonlinear Dynamics and Econometrics, 12, 1558-3708. http://dx.doi.org/10.2202/1558-3708.1459
|
[12]
|
Engle, R.F. and Rangel, J.C. (2008) The Spline-GARCH Model for Low Frequency Volatility and Its Global Macroeconomic Causes. Review of Financial Studies, 21, 1187-1222. http://dx.doi.org/10.1093/rfs/hhn004
|
[13]
|
Beran, J. and Weiershauser, A. (2011) On Spline Regression under Gaussian Subordination with Long Memory. Journal of Multivariate Analysis, 102, 315-335. http://dx.doi.org/10.1016/j.jmva.2010.09.007
|
[14]
|
Beran, J. and Feng, Y.H. (2002) SEMIFAR Models—A Semiparametric Approach to Modelling Trends, Long-Range Dependence and Nonstationarity. Computational Statistics and Data Analysis, 40, 393-419. http://dx.doi.org/10.1016/S0167-9473(02)00007-5
|
[15]
|
Engle, R.F. and Smith, A.D. (1999) Stochastic Permanent Breaks. The Review of Economics and Statistics, 81, 553-574. http://dx.doi.org/10.1162/003465399558382
|
[16]
|
Ray, B.K. and Tsay, R.S. (2002) Bayesian Methods for Change-Point Detection in Long-Range Dependent Processes. Journal of Time Series Analysis, 23, 687-705. http://dx.doi.org/10.1111/1467-9892.00286
|
[17]
|
Lu, Y. and Perron, P. (2010) Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model. Journal of Empirical Finance, 17, 138-156. http://dx.doi.org/10.1016/j.jempfin.2009.10.001
|
[18]
|
Perron, P. and Varsnekov, R.T. (2012) Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns. Boston University, Boston.
|
[19]
|
Chapman, D.A. and Ogaki, M. (1998) Cotrending and the Stationarity of the Real Interest Rate. Economics Letters, 42, 133-138. http://dx.doi.org/10.1016/0165-1765(93)90050-M
|
[20]
|
Bierens, H.J. (2000) Nonparametric Nonlinear Cotrending Analysis, with an Application to Interest and Inflation in the United States. Journal of Business and Economic Statistics, 18, 323-337. http://dx.doi.org/10.2307/1392265
|
[21]
|
Hendry, D.F. (1996) A Theory of Co-Breaking. Nuffield College, University of Oxford, Oxford.
|
[22]
|
Hendry, D.F. and Massmann, M. (2007) Co-Breaking: Recent Advances and a Synopsis of the Literature. Journal of Business and Economic Statistics, 25, 33-51. http://dx.doi.org/10.1198/073500106000000422
|
[23]
|
Engle, R.F. and Kozicki, S. (1993) Testing for Common Features. Journal of Business & Economic Statistics, 11, 369-380. http://dx.doi.org/10.1080/07350015.1993.10509966
|
[24]
|
Engle, R.F. and Granger, C. (1987) Co-Integration and Error Correction: Representation, Estimation and Testing. Econometrica, 55, 251-276. http://dx.doi.org/10.2307/1913236
|
[25]
|
Bollerslev, T. (1990) Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized Arch Approach. Review of Economics and Statistics, 72, 489-505. http://dx.doi.org/10.2307/2109358
|
[26]
|
Baillie, R.T., Bollerslev, T. and Mikkelsen, H.O. (1996) Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 74, 3-30. http://dx.doi.org/10.1016/S0304-4076(95)01749-6
|
[27]
|
Conrad, C. and Haag, B.R. (2006) Inequality Constraints in the Fractionally Integrated GARCH Model. Journal of Financial Econometrics, 4, 413-449. http://dx.doi.org/10.1093/jjfinec/nbj015
|
[28]
|
Chan, N.H. and Palma, W. (1998) State Space Modeling of Long Memory Processes. Annals of Statistics, 26, 719-740. http://projecteuclid.org/euclid.aos/1028144856 http://dx.doi.org/10.1214/aos/1028144856
|
[29]
|
Kilian, L. (2011) Structural Vector Autoregressions. CEPR Discussion Paper, No. 8515.
|
[30]
|
Beran, J. and Feng, Y.H. (2001) Local Polynomial Estimation with a FARIMA-GARCH Error Process. Bernoulli, 7, 733-750. http://dx.doi.org/10.2307/3318539
|
[31]
|
Beran, J. and Feng, Y.H. (2002) Data Driven Bandwidth Choice for SEMIFAR Models. Journal of Computational and Graphical Statistics, 11, 690-713. http://dx.doi.org/10.1198/106186002420
|
[32]
|
Bordignon, S. and Raggi, D. (2010) Long Memory and Nonlinearities in Realized Volatility. University of Padova, Padova.
|
[33]
|
Martens, M., van Dijk, D. and de Pooter, M. (2003) Modeling and Forecasting S&P500 Volatility: Long Memory, Structural Breaks and Nonlinearity. Erasmus University of Rotterdam, Rotterdam.
|
[34]
|
Grassi, S. and de Magistris, P.S. (2011) When Long Memory Meets the Kalman Filter: A Comparative Study. Aarhus University, Aarhus.
|
[35]
|
Lavielle, M. and Moulines, E. (2000) Least-Squares Estimation of an Unknown Number of Shifts in a Time Series. Journal of Time Series Analysis, 21, 33-59. http://dx.doi.org/10.1111/1467-9892.00172
|
[36]
|
Granger, C.W.J. and Hyung, N. (2004) Occasional Structural Breaks and Long Memory with an Application to the S&P500 Absolute Returns. Journal of Empirical Finance, 11, 399-421. http://dx.doi.org/10.1016/j.jempfin.2003.03.001
|
[37]
|
Morana, C. (2014) New Insights on the US OIS Spreads Term Structure during the Recent Financial Turmoil. Applied Financial Economics, 24, 291-317. http://dx.doi.org/10.1080/09603107.2013.864034
|
[38]
|
Bai, J.S. and Ng, S. (2013) Principal Components Estimation and Identification of Static Factors. Journal of Econometrics, 176, 18-29. http://dx.doi.org/10.1016/j.jeconom.2013.03.007
|
[39]
|
Robin, J.M. and Smith, R.J. (2000) Tests of Rank. Econometric Theory, 16, 151-175. http://dx.doi.org/10.1017/S0266466600162012
|
[40]
|
Peres-Neto, P.R., Jackson, D.A. and Somers, K.M. (2005) How Many Principal Components? Stopping Rules for Determining the Number of Non-Trivial Axes Revisited. Computational Statistics and Data Analysis, 49, 974-997. http://dx.doi.org/10.1016/j.csda.2004.06.015
|
[41]
|
Bai, J. and Ng, S. (2002) Determining the Number of Factors in Approximate Factor Models. Econometrica, 70, 191-221. http://dx.doi.org/10.1111/1468-0262.00273
|
[42]
|
Bai, J.S. and Ng, S. (2007) Determining the Number of Primitive Shocks in Factor Models. Journal of Business and Economic Statistics, 25, 52-60. http://dx.doi.org/10.1198/073500106000000413
|
[43]
|
Nielsen, M.O. and Frederiksen, P.H. (2005) Finite Sample Comparison of Parametric, Semiparametric and Wavelet Estimators of Fractional Integration. Econometric Reviews, 24, 405-443. http://dx.doi.org/10.1080/07474930500405790
|
[44]
|
Chan, N.H. and Palma, W. (2006) Estimation of Long-Memory Time Series Models: A Survey of Different Likelihood Based Approaches. In: Fomby, T.H. and Terrel, D., Eds., Econometric Analysis of Economic and Financial Time Series, Advances in Econometrics, Vol. 20, Emerald Group Publishing Limited, Bingley, 89-121.
|
[45]
|
Robinson, P.M. (2006) Conditional-Sum-of-Squares Estimation of Models for Stationary Time Series with Long Memory. IMS Lecture Notes-Monograph Series, Time Series and Related Topics, 52, 130-137. http://dx.doi.org/10.1214/074921706000000996
|
[46]
|
Sowell, F. (1992) Maximum Likelihood Estimation of Stationary Univariate Fractionally Integrated Time Series Models. Journal of Econometrics, 53, 165-188. http://dx.doi.org/10.1016/0304-4076(92)90084-5
|
[47]
|
Martin, L.V. and Wilkins, N.P. (1999) Indirect Estimation of ARFIMA and VARFIMA Models. Journal of Econometrics, 93, 149-175. http://dx.doi.org/10.1016/S0304-4076(99)00007-x
|
[48]
|
Baillie, R. and Kapetanios, G. (2013) Inference for Impulse Response Functions from Multivariate Strongly Persistent Processes. Queen Mary University of London, London.
|
[49]
|
Bai, J.S. and Ng, S. (2006) Confidence Intervals for Diffusion Index Forecasts and Inference with Factor-Augmented Regressions. Econometrica, 74, 1133-1150. http://dx.doi.org/10.1111/j.1468-0262.2006.00696.x
|
[50]
|
Bai, J.S. and Ng, S. (2008) Forecasting Economic Time Series Using Targeted Predictors. Journal of Econometrics, 146, 304-317. http://dx.doi.org/10.1016/j.jeconom.2008.08.010
|
[51]
|
Granger, C.W.J. and Jeon, Y. (2004) Thick Modeling. Economic Modelling, 21, 323-343.
|
[52]
|
Alexander, C.O. (2002) Principal Component Models for Generating Large GARCH Covariance Matrices. Economic Notes, 31, 337-359. http://dx.doi.org/10.1111/1468-0300.00089
|
[53]
|
Amado, C. and Terasvirta, T. (2008) Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure. CREATES Research Paper, No. 8.
|
[54]
|
Hamilton, J.D. and Susmel, R. (1994) Autoregressive Conditional Heteroskedasticity and Changes in Regime. Journal of Econometrics, 64, 307-333. http://dx.doi.org/10.1016/0304-4076(94)90067-1
|
[55]
|
Engle, R.F. (2002) Dynamic Conditional Correlation—A Simple Class of Multivariate GARCH Models. Journal of Business and Economic Statistics, 20, 339-350. http://dx.doi.org/10.1198/073500102288618487
|
[56]
|
Engle, R.F. and Kelly, B.T. (2012) Dynamic Equicorrelation. Journal of Business and Economics Statistics, 30, 212-228.
|
[57]
|
Quah, D. and Sargent, T.J. (1992) A Dinamic Index Model for Large Cross-Section. In: Stock, J. and Watson, M., Eds., Business Cycle, University of Chicago Press, Chicago.
|
[58]
|
Watson, M. and Engle, R.F. (1983) Alternative Algorithms for the Estimation of Dynamic Factor, Mimic and Varying Coefficient Regression Models. Journal of Econometrics, 23, 385-400. http://dx.doi.org/10.1016/0304-4076
|
[59]
|
Doz, C., Giannone, D. and Reichlin, L. (2011) A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering. Journal of Econometrics, 164, 188-205. http://dx.doi.org/10.1016/j.jeconom.2011.02.012
|
[60]
|
Doz, C., Giannone, D. and Reichlin, L. (2012) A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models. Review of Economics and Statistics, 94, 1014-1024. http://dx.doi.org/10.1162/REST_a_00225
|
[61]
|
Bai, J.S. (2004) Estimating Cross-Section Common Stochastic Trends in Nonstationary Panel Data. Journal of Econometrics, 122, 137-138. http://dx.doi.org/10.1016/j.jeconom.2003.10.022
|
[62]
|
Castells, F., Laguna, P., Sornmo, L., Bollmann, A. and Millet-Roig, J. (2007) Principal Component Analysis in ECG Signa Processing. EURASIP Journal on Advances in Signal Processing, 1, 98-119. http://dx.doi.org/10.1155/2007/74580
|
[63]
|
Morana, C. (2007) Multivariate Modelling of Long Memory Processes with Common Components. Computational Statistics and Data Analysis, 52, 919-934. http://dx.doi.org/10.1016/j.csda.2006.12.010
|
[64]
|
Hatanka, M. and Yamada, H. (1994) Co-Trending: An Extended Version. University of Hiroshima, Hiroshima.
|
[65]
|
Lansang, J.R.G. and Barrios, E.B. (2009) Principal Components Analysis of Nonstationary Time Series Data. Statistics and Computing, 19, 173-187. http://dx.doi.org/10.1007/s11222-008-9082-y
|
[66]
|
Morana, C. (2014) Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks. DEMS Working Paper Series, No. 273.
|
[67]
|
Cassola, N. and Morana, C. (2012) Euro Money Market Spreads during the 2007-? Financial Crisis. Journal of Empirical Finance, 19, 548-557. http://dx.doi.org/10.1016/j.jempfin.2012.04.003
|
[68]
|
Morana, C. (2013) Oil Price Dynamics, Macro-Finance Interactions and the Role of Financial Speculation. Journal of Banking and Finance, 37, 206-226. http://dx.doi.org/10.1016/j.jbankfin.2012.08.027
|
[69]
|
Bagliano, F.C. and Morana, C. (2014) Determinants of US Financial Fragility Conditions. Research in International Business and Finance, 30, 377-392. http://dx.doi.org/10.1016/j.ribaf.2012.08.003
|