The Potential of Cerebrolysin in the Treatment of Schizophrenia

Abstract

Schizophrenia and psychosis are psychiatric condition whose neural mechanisms are yet incompletely known, and for which pharmacological treatment is too often ineffective in a growing clinical cohort. Recently, dendritic morphological changes in arborization and dendritic spine density in limbic regions has been reported in postmortem tissue from schizophrenic patients and in animal models of schizophrenia, suggesting that the use of medication improving synaptogenesis may be beneficial as additional treatment of psychotic patients. Cerebrolysin (Cbl) is a drug available for clinical with active neuropeptides fragments that mimics the action of endogenous neurotrophic factors such as BDNF, GDNF, CNTF and NGF, which improves the integrity of the neuronal circuits as well as cognitive and behavioral performance by exerting a neuroprotective effect and promoting the generation of new functional synapses. Recent work from our laboratory has shown that Cbl ameliorates synaptic and dendritic pathology in animal models of schizophrenia by increasing synaptic density and restoring neuronal cytoarchitecture. This neuroprotective effect improves the integrity of the neuronal circuits and improves cognitive and behavioral performance. Importantly, Cbl treatment seems to be safe when used in combination with neuroleptics such as risperidone. The present article analyzes the potential of Cbl in the treatment of neurodevelopmental disease, and reviews the current literature on the effects of Cbl in in vivo animal models of neurodevelopmental disorders like schizophrenia.

Share and Cite:

Flores, G. and Atzori, M. (2014) The Potential of Cerebrolysin in the Treatment of Schizophrenia. Pharmacology & Pharmacy, 5, 691-704. doi: 10.4236/pp.2014.57079.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Schmitt, A., Malchow, B., Hasan, A. and Falkai, P. (2014) The Impact of Environmental Factors in Severe Psychiatric Disorders. Frontiers in Neuroscience, 8, 1-10.
[2] Kalus, P., Müller, T.J., Zuschratter, W. and Senitz, D. (2000) The Dendritic Architecture of Prefrontal Pyramidal Neurons in Schizophrenic Patients. NeuroReport, 11, 3621-3625.
http://dx.doi.org/10.1097/00001756-200011090-00044
[3] Glantz, L.A. and Lewis, D.A. (2000) Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia. Archives of General Psychiatry, 57, 65-73.
[4] Nieto, R., Kukuljan, M. and Silva, H. (2013) BDNF and Schizophrenia: From Neurodevelopment to Neuronal Plasticity, Learning, and Memory. Frontiers in Psychiatry, 4, 1-11.
[5] Ajami, A., Hosseini, S.H., Taghipour, M. and Khalilian, A. (2014) Changes in Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor-Beta in Schizophrenic Patients before and after Treatment. Scandinavian Journal of Immunology.
http://dx.doi.org/10.1111/sji.12158
[6] Flores, G., Alquicer, G., Silva-Gomez, A.B., Zaldivar, G., Stewart, J., Quirion, R. and Srivastava, L.K. (2005) Alterations in Dendritic Morphology of Prefrontal Cortical and Nucleus Accumbens Neurons in Post-Pubertal Rats after Neonatal Excitotoxic Lesions of the Ventral Hippocampus. Neuroscience, 133, 463-470.
http://dx.doi.org/10.1016/j.neuroscience.2005.02.021
[7] Alquicer, G., Morales-Medina, J.C., Quirion, R. and Flores, G. (2008) Postweaning Social Isolation Enhances Morphological Changes in the Neonatal Ventral Hippocampal Lesion Rat Model of Psychosis. Journal of Chemical Neuroanatomy, 35, 179-187.
http://dx.doi.org/10.1016/j.jchemneu.2007.10.001
[8] Solis, O., Vázquez-Roque, R.A., Camacho-Abrego, I., Gamboa, C., De La Cruz, F., Zamudio, S. and Flores, G. (2009) Decreased Dendritic Spine Density of Neurons of the Prefrontal Cortex and Nucleus Accumbens and Enhanced Amphetamine Sensitivity in Postpubertal Rats after a Neonatal Amygdala Lesion. Synapse, 63, 1143-1153.
http://dx.doi.org/10.1002/syn.20697
[9] Bringas, M.E., Morales-Medina, J.C., Flores-Vivaldo, Y., Negrete-Diaz, J.V., Aguilar-Alonso, P., León-Chávez, B.A., Lazcano-Ortiz, Z., Monroy, E., Rodríguez-Moreno, A., Quirion, R. and Flores, G. (2012) Clozapine Administration Reverses Behavioral, Neuronal, and Nitric Oxide Disturbances in the Neonatal Ventral Hippocampus Rat. Neuropharmacology, 62, 1848-1857.
http://dx.doi.org/10.1016/j.neuropharm.2011.12.008
[10] Vázquez-Roque, R.A., Ramos, B., Tecuatl, C., Juárez, I., Adame, A., de la Cruz, F., Zamudio, S., Mena, R., Rockenstein, E., Masliah, E. and Flores, G. (2012) Chronic Administration of the Neurotrophic Agent (Cerebrolysin) Ameliorated the Behavioral and Morphological Changes Induced by Neonatal Ventral Hippocampus Lesion in the Rat. Journal Neuroscience Research, 90, 288-306.
http://dx.doi.org/10.1002/jnr.22753
[11] Vázquez-Roque, R.A., Ubhi, K., Masliah, E. and Flores, G. (2014) Chronic Cerebrolysin Administration Attenuates Neuronal Abnormalities in the Basolateral Amygdala Induced by Neonatal Ventral Hippocampus Lesion in the Rat. Synapse, 68, 31-38.
http://dx.doi.org/10.1002/syn.21718
[12] Weickert, C.S., Hyde, T.M., Lipska, B.K., Herman, M.M., Weinberger, D.R. and Kleinman, J.E. (2003) Reduced Brain-Derived Neurotrophic Factor in Prefrontal Cortex of Patients with Schizophrenia. Molecular Psychiatry, 8, 592-610.
http://dx.doi.org/10.1038/sj.mp.4001308
[13] Juárez, I., González, D.J., Mena, R. and Flores, G. (2011) The Chronic Administration of Cerebrolysin Induces Plastic Changes in the Prefrontal Cortex and Dentate Gyrus in Aged Mice. Synapse, 65, 1128-1135.
http://dx.doi.org/10.1002/syn.20950
[14] Alcántara-González, F., Gamboa, C., de la Cruz, F., Zamudio, S. and Flores, G. (2012) Combined Administration of Cerebrolyisin and Donepezil Induces Plastic Changes in Medial Prefrontal Cortex and Dentate Gyrus in Aged Mice. Synapse, 66, 938-949.
http://dx.doi.org/10.1002/syn.21588
[15] Flores, G., Hernández-Cabrera, J., Santamaria-Juárez, C., Vázquez-Roque, R.A., Monserrat-Hernández, E., Gómez-Villalobos, M.J., Flores-Hernández, J., Atonal-Flores, F. and López-López, J.G. (2014) Chronic Administration of the Resveratrol or N-PEP-12 Ameliorates the Endothelial Dysfunction in Aging Rats. Pharmacology & Pharmacy, 5, 69-74.
http://dx.doi.org/10.4236/pp.2014.51011
[16] Arnsten, A.F., Wang, M.J. and Paspalas, C.D. (2012) Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses. Neuron, 76, 223-239.
http://dx.doi.org/10.1016/j.neuron.2012.08.038
[17] Eastwood, S.L. and Harrison, P.J. (1995) Decreased Synaptophysin in the Medial Temporal Lobe in Schizophrenia Demonstrated Using Immunoautoradiography. Neuroscience, 69, 339-343.
http://dx.doi.org/10.1016/0306-4522(95)00324-C
[18] Eastwood, S.L., Burnet, P.W. and Harrison, P.J. (1995) Altered Synaptophysin Expression as a Marker of Synaptic Pathology in Schizophrenia. Neuroscience, 66, 309-319.
http://dx.doi.org/10.1016/0306-4522(94)00586-T
[19] Perrone-Bizzozero, N.I., Sower, A.C., Bird, E.D., Benowitz, L.I., Ivins, K.J. and Neve, R.L. (1996) Levels of the Growth-Associated Protein GAP-43 Are Selectively Increased in Association Cortices in Schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 93, 14182-14187.
http://dx.doi.org/10.1073/pnas.93.24.14182
[20] Glantz, L.A. and Lewis, D.A. (1997) Reduction of Synaptophysin Immunoreactivity in the Prefrontal Cortex of Subjects with Schizophrenia. Regional and Diagnostic Specificity. JAMA Psychiatry, 54, 943-952.
http://dx.doi.org/10.1001/archpsyc.1997.01830220065010
[21] Davidsson, P., Gottfries, J., Bogdanovic, N., Ekman, R., Karlsson, I., Gottfries, C.G. and Blennow, K. (1999) The Synaptic-Vesicle-Specific Proteins rab3a and Synaptophysin Are Reduced in Thalamus and Related Cortical Brain Regions in Schizophrenic Brains. Schizophrenia Research, 40, 23-29.
http://dx.doi.org/10.1016/S0920-9964(99)00037-7
[22] Eastwood, S.L. and Harrison, P.J. (1999) Detection and Quantification of Hippocampal Synaptophysin Messenger RNA in Schizophrenia Using Autoclaved, Formalin-Fixed, Paraffin Wax-Embedded Sections. Neuroscience, 93, 99-106.
http://dx.doi.org/10.1016/S0306-4522(99)00096-2
[23] Karson, C.N., Mrak, R.E., Schluterman, K.O., Sturner, W.Q., Sheng, J.G. and Griffin, W.S. (1999) Alterations in Synaptic Proteins and Their Encoding mRNAs in Prefrontal Cortex in Schizophrenia: A Possible Neurochemical Basis for “Hypofrontality”. Molecular Psychiatry, 4, 39-45.
http://dx.doi.org/10.1038/sj.mp.4000459
[24] Landén, M., Davidsson, P., Gottfries, C.G., Grenfeldt, B., Stridsberg, M. and Blennow, K. (1999) Reduction of the Small Synaptic Vesicle Protein Synaptophysin but Not the Large Dense Core Chromogranins in the Left Thalamus of Subjects with Schizophrenia. Biological Psychiatry, 46, 1698-1702.
http://dx.doi.org/10.1016/S0006-3223(99)00160-2
[25] Vawter, M.P., Howard, A.L., Hyde, T.M., Kleinman, J.E. and Freed, W.J. (1999) Alterations of Hippocampal Secreted N-CAM in Bipolar Disorder and Synaptophysin in Schizophrenia. Molecular Psychiatry, 4, 467-475.
http://dx.doi.org/10.1038/sj.mp.4000547
[26] Eastwood, S.L. and Harrison, P.J. (2001) Synaptic Pathology in the Anterior Cingulate Cortex in Schizophrenia and Mood Disorders. A Review and a Western Blot Study of Synaptophysin, GAP-43 and the Complexins. Brain Research Bulletin, 55, 569-578.
http://dx.doi.org/10.1016/S0361-9230(01)00530-5
[27] Eastwood, S.L., Cotter, D. and Harrison, P.J. (2001) Cerebellar Synaptic Protein Expression in Schizophrenia. Neuroscience, 105, 219-229.
http://dx.doi.org/10.1016/S0306-4522(01)00141-5
[28] Webster, M.J., Shannon Weickert, C., Herman, M.M., Hyde, T.M. and Kleinman, J.E. (2001) Synaptophysin and GAP-43 mRNA Levels in the Hippocampus of Subjects with Schizophrenia. Schizophrenia Research, 49, 89-98.
http://dx.doi.org/10.1016/S0920-9964(00)00052-9
[29] Hemby, S.E., Ginsberg, S.D., Brunk, B., Arnold, S.E., Trojanowski, J.Q. and Eberwine, J.H. (2002) Gene Expression Profile for Schizophrenia: Discrete Neuron Transcription Patterns in the Entorhinal Cortex. JAMA Psychiatry, 59, 631-640.
http://dx.doi.org/10.1001/archpsyc.59.7.631
[30] Mukaetova-Ladinska, E., Hurt, J., Honer, W.G., Harrington, C.R. and Wischik, C.M. (2002) Loss of Synaptic but Not Cytoskeletal Proteins in the Cerebellum of Chronic Schizophrenics. Neuroscience Letters, 317, 161-165.
http://dx.doi.org/10.1016/S0304-3940(01)02458-2
[31] Halim, N.D., Weickert, C.S., McClintock, B.W., Hyde, T.M., Weinberger, D.R., Kleinman, J.E. and Lipska, B.K. (2003) Presynaptic Proteins in the Prefrontal Cortex of Patients with Schizophrenia and Rats with Abnormal Prefrontal Development. Molecular Psychiatry, 8, 797-810.
http://dx.doi.org/10.1038/sj.mp.4001319
[32] Chambers, J.S., Thomas, D., Saland, L., Neve, R.L. and Perrone-Bizzozero, N.I. (2005) Growth-Associated Protein 43 (GAP-43) and Synaptophysin Alterations in the Dentate Gyrus of Patients with Schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 283-290.
[33] Collin, G., Kahn, R.S., de Reus, M.A., Cahn, W. and van den Heuvel, M.P. (2014) Impaired Rich Club Connectivity in Unaffected Siblings of Schizophrenia Patients. Schizophrenia Bulletin, 40, 438-448.
http://dx.doi.org/10.1093/schbul/sbt162
[34] Silva-Gómez, A.B., Rojas, D., Juárez, I. and Flores, G. (2003) Decreased Dendritic Spine Density on Prefrontal Cortical and Hippocampal Pyramidal Neurons in Postweaning Social Isolation Rats. Brain Research, 983, 128-136.
http://dx.doi.org/10.1016/S0006-8993(03)03042-7
[35] Sala-Catala, J., Torrero, C., Regalado, M., Salas, M. and Ruiz-Marcos, A. (2005) Movements Restriction and Alterations of the Number of Spines Distributed Along the Apical Shafts of Layer V Pyramids in Motor and Primary Sensory Cortices of the Peripubertal and Adult Rat. Neuroscience, 133, 137-145.
http://dx.doi.org/10.1016/j.neuroscience.2005.01.009
[36] Ferdman, N., Murmu, R.P., Bock, J., Braun, K. and Leshem, M. (2007) Weaning Age, Social Isolation, and Gender, Interact to Determine Adult Explorative and Social Behavior, and Dendritic and Spine Morphology in Prefrontal Cortex of Rats. Behavioural Brain Research, 180, 174-182.
http://dx.doi.org/10.1016/j.bbr.2007.03.011
[37] Wang, Y.C., Ho, U.C., Ko, M.C., Liao, C.C. and Lee, L.J. (2012) Differential Neuronal Changes in Medial Prefrontal Cortex, Basolateral Amygdala and Nucleus Accumbens after Postweaning Social Isolation. Brain Structure and Function, 217, 337-351.
http://dx.doi.org/10.1007/s00429-011-0355-4
[38] Breier, A., Schreiber, J.L., Dyer, J. and Pickar, D. (1991) National Institute of Mental Health Longitudinal Study of Chronic Schizophrenia. Prognosis and Predictors of Outcome. JAMA Psychiatry, 48, 239-246.
[39] Nuechterlein, K.H., Dawson, M.E., Gitlin, M., Ventura, J., Goldstein, M.J., Snyder, K.S., Yee, C.M. and Mintz, J. (1992) Developmental Processes in Schizophrenic Disorders: Longitudinal Studies of Vulnerability and Stress. Schizophrenia Bulletin, 18, 387-425.
http://dx.doi.org/10.1093/schbul/18.3.387
[40] Miller, P., Lawrie, S.M., Hodges, A., Clafferty, R., Cosway, R. and Johnstone, E.C. (2001) Genetic Liability, Illicit Drug Use, Life Stress and Psychotic Symptoms: Preliminary Findings from the Edinburgh Study of People at High Risk for Schizophrenia. Social Psychiatry and Psychiatric Epidemiology, 36, 338-342.
http://dx.doi.org/10.1007/s001270170038
[41] Dawson, M.E., Schell, A.M., Rissling, A., Ventura, J., Subotnik, K.L. and Nuechterlein, K.H. (2010) Psychophysiological Prodromal Signs of Schizophrenic Relapse: A Pilot Study. Schizophrenia Research, 123, 64-67.
http://dx.doi.org/10.1016/j.schres.2010.07.029
[42] Falkai, P., Schneider-Axmann, T. and Honer, W.G. (2000) Entorhinal Cortex Pre-Alpha Cell Clusters in Schizophrenia: Quantitative Evidence of a Developmental Abnormality. Biological Psychiatry, 47, 937-943.
[43] Jakob, H. and Beckmann, H. (1994) Circumscribed Malformation and Nerve Cell Alterations in the Entorhinal Cortex of Schizophrenics. Pathogenetic and Clinical Aspects. Journal of Neural Transmission/General Section JNT, 98, 83-106.
http://dx.doi.org/10.1007/BF01277013
[44] Kovalenko, S., Bergmann, A., Schneider-Axmann, T., Ovary, I., Majtenyi, K., Havas, L., Honer, W.G., Bogerts, B. and Falkai, P. (2003) Regio Entorhinalis in Schizophrenia: More Evidence for Migrational Disturbances and Suggestions for a New Biological Hypothesis. Pharmacopsychiatry, 36, 158-161.
http://dx.doi.org/10.1055/s-2003-45124
[45] Parlapani, E., Schmitt, A., Erdmann, A., Bernstein, H.G., Breunig, B., Gruber, O., Petroianu, G., von Wilmsdorff, M., Schneider-Axmann, T., Honer, W. and Falkai, P. (2009) Association between Myelin Basic Protein Expression and Left Entorhinal Cortex Pre-Alpha Cell Layer Disorganization in Schizophrenia. Brain Research, 1301, 126-134.
http://dx.doi.org/10.1016/j.brainres.2009.09.007
[46] Fung, S.J., Webster, M.J., Sivagnanasundaram, S., Duncan, C., Elashoff, M. and Weickert, C.S. (2010) Expression of Interneuron Markers in the Dorsolateral Prefrontal Cortex of the Developing Human and Inschizophrenia. American Journal of Psychiatry, 167, 1479-1488.
http://dx.doi.org/10.1176/appi.ajp.2010.09060784
[47] Mellios, N., Huang, H.S., Baker, S.P., Galdzicka, M., Ginns, E. and Akbarian, S. (2009) Molecular Determinants of Dysregulated GABAergic Gene Expression in the Prefrontal Cortex of Subjects with Schizophrenia. Biological Psychiatry, 65, 1006-1014.
http://dx.doi.org/10.1016/j.biopsych.2008.11.019
[48] Morris, H.M., Hashimoto, T. and Lewis, D.A. (2008) Alterations in Somatostatin mRNA Expression in the Dorsolateral Prefrontal Cortex of Subjects with Schizophreniaor Schizoaffective Disorder. Cerebral Cortex, 18, 1575-1587.
http://dx.doi.org/10.1093/cercor/bhm186
[49] Reynolds, G.P. and Beasley, C.L. (2001) GABAergic Neuronal Subtypes in the Human Frontal Cortex—Development and Deficits in Schizophrenia. Journal of Chemical Neuroanatomy, 22, 95-100.
http://dx.doi.org/10.1016/S0891-0618(01)00113-2
[50] Catts, V.S., Fung, S.J., Long, L.E., Joshi, D., Vercammen, A., Allen, K.M., Fillman, S.G., Rothmond, D.A., Sinclair, D., Tiwari, Y., Tsai, S.Y., Weickert, T.W. and Shannon Weickert, C. (2013) Rethinking Schizophrenia in the Context of Normal Neurodevelopment. Frontiers in Cellular Neuroscience, 15, 1-27.
[51] Cass, D.K., Flores-Barrera, E., Thomases, D.R., Vital, W.F., Caballero, A. and Tseng, K.Y. (2014) CB1 Cannabinoid Receptor Stimulation during Adolescence Impairs the Maturation of GABA Function in the Adult Rat Prefrontal Cortex. Molecular Psychiatry, 19, 536-543.
http://dx.doi.org/10.1038/mp.2014.14
[52] Caballero, A., Thomases, D.R., Flores-Barrera, E., Cass, D.K. and Tseng, K.Y. (2014) Emergence of GABAergic-Dependent Regulation of Input-Specific Plasticity in the Adult Rat Prefrontal Cortex during Adolescence. Psychopharmacology, 231, 1789-1796.
http://dx.doi.org/10.1007/s00213-013-3216-4
[53] Tseng, K.Y., Lewis, B.L., Hashimoto, T., Sesack, S.R., Kloc, M., Lewis, D.A. and O’Donnell, P. (2008) A Neonatal Ventral Hippocampal Lesion Causes Functional Deficits in Adult Prefrontal Cortical Interneurons. Journal of Neuroscience, 28, 12691-12699.
http://dx.doi.org/10.1523/JNEUROSCI.4166-08.2008
[54] Hakak, Y., Walker, J.R., Li, C., Wong, W.H., Davis, K.L., Buxbaum, J.D., Haroutunian, V. and Fienberg, A.A. (2001) Genome-Wide Expression Analysis Reveals Dysregulation of Myelination-Related Genes in Chronic Schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 4746-4751.
http://dx.doi.org/10.1073/pnas.081071198
[55] Matthews, P.R., Eastwood, S.L. and Harrison, P.J. (2012) Reduced Myelin Basic Protein and Actin-Related Gene Expression in Visual Cortex in Schizophrenia. PLoS ONE, 7, Article ID: e38211.
[56] Kyriakopoulos, M., Vyas, N.S., Barker, G.J., Chitnis, X.A. and Frangou, S. (2008) A Diffusion Tensor Imaging Study of White Matter in Early-Onset Schizophrenia. Biological Psychiatry, 63, 519-523.
http://dx.doi.org/10.1016/j.biopsych.2007.05.021
[57] Honer, W.G., Falkai, P., Chen, C., Arango, V., Mann, J.J. and Dwork, A.J. (1999) Synaptic and Plasticity-Associated Proteins in Anterior Frontal Cortex in Severe Mental Illness. Neuroscience, 91, 1247-1255.
http://dx.doi.org/10.1016/S0306-4522(98)00679-4
[58] Akbarian, S., Bunney Jr., W.E., Potkin, S.G., Wigal, S.B., Hagman, J.O., Sandman, C.A. and Jones, E.G. (1993) Altered Distribution of Nicotinamide-Adenine Dinucleotide Phosphate-Diaphorase Cells in Frontal Lobe of Schizophrenics Implies Disturbances of Cortical Development. JAMA Psychiatry, 50, 169-177.
http://dx.doi.org/10.1001/archpsyc.1993.01820150007001
[59] Weinberger, D.R., Torrey, E.F., Neophytides, A.N. and Wyatt, R.J. (1979) Lateral Cerebral Ventricular Enlargement in Chronic Schizophrenia. JAMA Psychiatry, 36, 735-739.
http://dx.doi.org/10.1001/archpsyc.1979.01780070013001
[60] Glahn, D.C., Laird, A.R., Ellison-Wright, I., Thelen, S.M., Robinson, J.L., Lancaster, J.L., Bullmore, E. and Fox, P.T. (2008) Meta-Analysis of Gray Matter Anomalies in Schizophrenia: Application of Anatomic Likelihood Estimation and Network Analysis. Biological Psychiatry, 64, 774-781.
[61] Olabi, B., Ellison-Wright, I., McIntosh, A.M., Wood, S.J., Bullmore, E. and Lawrie, S.M. (2011) Are There Progressive Brain Changes in Schizophrenia? A Meta-Analysis of Structural Magnetic Resonance Imaging Studies. Biological Psychiatry, 70, 88-96.
http://dx.doi.org/10.1016/j.biopsych.2011.01.032
[62] Benes, F.M., McSparren, J., Bird, E.D., San Giovanni, J.P. and Vincent, S.L. (1991) Deficits in Small Interneurons in Prefrontal and Cingulate Cortices of Schizophrenic and Schizoaffective Patients. JAMA Psychiatry, 48, 996-1001.
http://dx.doi.org/10.1001/archpsyc.1991.01810350036005
[63] Roberts, G.W., Colter, N., Lofthouse, R., Johnstone, E.C. and Crow, T.J. (1987) Is There Gliosis in Schizophrenia? Investigation of the Temporal Lobe. Biological Psychiatry, 22, 1459-1468.
http://dx.doi.org/10.1016/0006-3223(87)90104-1
[64] Heckers, S., Heinsen, H., Geiger, B. and Beckmann, H. (1991) Hippocampal Neuron Number in Schizophrenia. A Stereological Study. JAMA Psychiatry, 48, 1002-1008.
http://dx.doi.org/10.1001/archpsyc.1991.01810350042006
[65] Porton, B. and Wetsel, W.C. (2007) Reduction of Synapsin III in the Prefrontal Cortex of Individuals with Schizophrenia. Schizophrenia Research, 94, 366-370.
http://dx.doi.org/10.1016/j.schres.2007.04.016
[66] Broadbelt, K. and Jones, L.B. (2008) Evidence of Altered Calmodulin Immunoreactivity in Areas 9 and 32 of Schizophrenic Prefrontal Cortex. Journal of Psychiatric Research, 42, 612-621.
http://dx.doi.org/10.1016/j.jpsychires.2007.07.006
[67] Arnold, S.E. and Trojanowski, J.Q. (1996) Recent Advances in Defining the Neuropathology of Schizophrenia. Acta Neuropathologica, 92, 217-231.
http://dx.doi.org/10.1007/s004010050512
[68] Anticevic, A., Cole, M.W., Repovs, G., Savic, A., Driesen, N.R., Yang, G., Cho, Y.T., Murray, J.D., Glahn, D.C., Wang, X.J. and Krystal, J.H. (2013) Connectivity, Pharmacology, and Computation: Toward a Mechanistic Understanding of Neural System Dysfunction in Schizophrenia. Frontiers in Psychiatry, 4, 1-21.
http://dx.doi.org/10.3389/fpsyt.2013.00169
[69] Hu, M.R., Li, J., Eyler, L., Guo, X.F., Wei, Q.L., Tang, J.S., Liu, F., He, Z., Li, L.H., Jin, H., Liu, Z., Wang, J., Liu, F., Chen, H.F. and Zhao, J.P. (2013) Decreased Left Middle Temporal Gyrus Volume in Antipsychotic Drug-Naive, First-Episode Schizophrenia Patients and Their Healthy Unaffected Siblings. Schizophrenia Research, 144, 37-42.
http://dx.doi.org/10.1016/j.schres.2012.12.018
[70] Penzes, P., Buonanno, A., Passafaro, M., Sala, C. and Sweet, R.A. (2013) Developmental Vulnerability of Synapses and Circuits Associated with Neuropsychiatric Disorders. Journal of Neurochemistry, 126, 165-182.
http://dx.doi.org/10.1111/jnc.12261
[71] Kohen, R., Dobra, A., Tracy, J.H. and Haugen, E. (2014) Transcriptome Profiling of Human Hippocampus Dentate Gyrus Granule Cells in Mental Illness. Translational Psychiatry, 4, Article ID: e366.
http://dx.doi.org/10.1038/tp.2014.9
[72] Bracht, T., Horn, H., Strik, W., Federspiel, A., Razavi, N., Stegmayer, K., Wiest, R., Dierks, T., Müller, T.J. and Walther, S. (2014) White Matter Pathway Organization of the Reward System Is Related to Positive and Negative Symptoms in Schizophrenia. Schizophrenia Research, 153, 136-142.
http://dx.doi.org/10.1016/j.schres.2014.01.015
[73] DeLisi, L.E., Dauphinais, I.D. and Gershon, E.S. (1988) Perinatal Complications and Reduced Size of Brain Limbic Structures in Familial Schizophrenia. Schizophrenia Bulletin, 14, 185-191.
http://dx.doi.org/10.1093/schbul/14.2.185
[74] Suddath, R.L., Casanova, M.F., Goldberg, T.E., Daniel, D.G., Kelsoe Jr., J.R. and Weinberger, D.R. (1989) Temporal Lobe Pathology in Schizophrenia: A Quantitative Magnetic Resonance Imaging Study. American Journal of Psychiatry, 146, 464-472.
[75] Suddath, R.L., Christison, G.W., Torrey, E.F., Casanova, M.F. and Weinberger, D.R. (1990) Anatomical Abnormalities in the Brains of Monozygotic Twins Discordant for Schizophrenia. New England Journal of Medicine, 322, 789-794.
http://dx.doi.org/10.1056/NEJM199003223221201
[76] Steen, R.G., Mull, C., McClure, R., Hamer, R.M. and Lieberman, J.A. (2006) Brain Volume in First-Episode Schizophrenia: Systematic Review and Meta-Analysis of Magnetic Resonance Imaging Studies. British Journal of Psychiatry, 188, 510-588.
http://dx.doi.org/10.1192/bjp.188.6.510
[77] Tregellas, J.R. (2014) Neuroimaging Biomarkers for Early Drug Development in Schizophrenia. Biological Psychiatry, in press.
http://dx.doi.org/10.1016/j.biopsych.2013.08.025
[78] Malchow, B., Hasan, A., Fusar-Poli, P., Schmitt, A., Falkai, P. and Wobrock, T. (2013) Cannabis Abuse and Brain Morphology in Schizophrenia: A Review of the Available Evidence. European Archives of Psychiatry and Clinical Neuroscience, 263, 3-13.
http://dx.doi.org/10.1007/s00406-012-0346-3
[79] Wolf, C., Mohr, H., Schneider-Axmann, T., Reif, A., Wobrock, T., Scherk, H., Kraft, S., Schmitt, A., Falkai, P. and Gruber, O. (2014) CACNA1C Genotype Explains Interindividual Differences in Amygdala Volume among Patients with Schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 264, 93-102.
http://dx.doi.org/10.1007/s00406-013-0427-y
[80] Antonova, E., Sharma, T., Morris, R. and Kumari, V. (2004) The Relationship between Brain Structure and Neurocognition in Schizophrenia: A Selective Review. Schizophrenia Research, 70, 117-145.
http://dx.doi.org/10.1016/j.schres.2003.12.002
[81] Brambilla, P., Perlini, C., Rajagopalan, P., Saharan, P., Rambaldelli, G., Bellani, M., Dusi, N., Cerini, R., Pozzi Mucelli, R., Tansella, M. and Thompson, P.M. (2013) Schizophrenia Severity, Social Functioning and Hippocampal Neuroanatomy: Three-Dimensional Mapping Study. British Journal of Psychiatry, 202, 50-55.
http://dx.doi.org/10.1192/bjp.bp.111.105700
[82] Law, A.J., Weickert, C.S., Hyde, T.M., Kleinman, J.E., Harrison, P.J., Law, A.J., Weickert, C.S., Hyde, T.M., Kleinman, J.E. and Harrison, P.J. (2004) Reduced Spinophilin but Not Microtubule-Associated Protein 2 Expression in the Hippocampal Formation in Schizophrenia and Mood Disorders: Molecular Evidence for a Pathology of Dendritic Spines. American Journal of Psychiatry, 161, 1848-1855.
http://dx.doi.org/10.1176/appi.ajp.161.10.1848
[83] Kolomeets, N.S., Orlovskaya, D.D., Rachmanova, V.I. and Uranova, N.A. (2005) Ultrastructural Alterations in Hippocampal Mossy Fiber Synapses in Schizophrenia: A Postmortem Morphometric Study. Synapse, 57, 47-55.
http://dx.doi.org/10.1002/syn.20153
[84] Kolomeets, N.S., Orlovskaya, D.D. and Uranova, N.A. (2007) Decreased Numerical Density of CA3 Hippocampal Mossy Fiber Synapses in Schizophrenia. Synapse, 61, 615-621.
http://dx.doi.org/10.1002/syn.20405
[85] Medoff, D.R., Holcomb, H.H., Lahti, A.C. and Tamminga, C.A. (2001) Probing the Human Hippocampus Using rCBF: Contrasts in Schizophrenia. Hippocampus, 11, 543-550.
http://dx.doi.org/10.1002/hipo.1070
[86] Malaspina, D., Harkavy-Friedman, J., Corcoran, C., Mujica-Parodi, L., Printz, D., Gorman, J.M. and Van Heertum, R. (2004) Resting Neural Activity Distinguishes Subgroups of Schizophrenia Patients. Biological Psychiatry, 56, 931-937.
http://dx.doi.org/10.1016/j.biopsych.2004.09.013
[87] Schobel, S.A., Lewandowski, N.M., Corcoran, C.M., Moore, H., Brown, T., Malaspina, D. and Small, S.A. (2009) Differential Targeting of the CA1 Subfield of the Hippocampal Formation by Schizophrenia and Related Psychotic Disorders. JAMA Psychiatry, 66, 938-946.
http://dx.doi.org/10.1001/archgenpsychiatry.2009.115
[88] Varea, E., Castillo-Gómez, E., Gómez-Climent, M.A., Blasco-Ibáñez, J.M., Crespo, C., Martínez-Guijarro, F.J. and Nàcher, J. (2007) PSA-NCAM Expression in the Human Prefrontal Cortex. Journal of Chemical Neuroanatomy, 33, 202-209.
http://dx.doi.org/10.1016/j.jchemneu.2007.03.006
[89] Barbeau, D., Liang, J.J., Robitaille, Y., Quirion, R. and Srivastava, L.K. (1995) Decreased Expression of the Embryonic Form of the Neural Cell Adhesion Molecule in Schizophrenic Brains. Proceedings of the National Academy of Sciences of the United States of America, 92, 2785-2789.
http://dx.doi.org/10.1073/pnas.92.7.2785
[90] Ní Dhúill, C.M., Fox, G.B., Pittock, S.J., O’Connell, A.W., Murphy, K.J. and Regan, C.M. (1999) Polysialylated Neural Cell Adhesion Molecule Expression in the Dentate Gyrus of the Human Hippocampal Formation from Infancy to Old Age. Journal of Neuroscience Research, 55, 99-106.
http://dx.doi.org/10.1002/(SICI)1097-4547(19990101)55:1<99::AID-JNR11>3.0.CO;2-S
[91] Gilabert-Juan, J., Varea, E., Guirado, R., Blasco-Ibáñez, J.M., Crespo, C. and Nácher, J. (2012) Alterations in the Expression of PSA-NCAM and Synaptic Proteins in the Dorsolateral Prefrontal Cortex of Psychiatric Disorder Patients. Neuroscience Letters, 530, 97-102.
http://dx.doi.org/10.1016/j.neulet.2012.09.032
[92] Benes, F.M. and Berretta, S. (2001) GABAergic Interneurons: Implications for Understanding Schizophrenia and Bipolar Disorder. Neuropsychopharmacology, 25, 1-27.
http://dx.doi.org/10.1016/S0893-133X(01)00225-1
[93] Guidotti, A., Auta, J., Davis, J.M., Dong, E., Grayson, D.R., Veldic, M., Zhang, X. and Costa, E. (2005) GABAergic Dysfunction in Schizophrenia: New Treatment Strategies on the Horizon. Psychopharmacology, 180, 191-205.
http://dx.doi.org/10.1007/s00213-005-2212-8
[94] Lewis, D.A., Hashimoto, T. and Volk, D.W. (2005) Cortical Inhibitory Neurons and Schizophrenia. Nature Reviews Neuroscience, 6, 312-324.
http://dx.doi.org/10.1038/nrn1648
[95] Rotaru, D.C., Yoshino, H., Lewis, D.A., Ermentrout, G.B. and Gonzalez-Burgos, G. (2011) Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia. Journal of Neuroscience, 31, 142-156.
http://dx.doi.org/10.1523/JNEUROSCI.1970-10.2011
[96] Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S.Q. and Belforte, J.E. (2012) GABAergic Interneuron Origin of Schizophrenia Pathophysiology. Neuropharmacology, 62, 1574-1583.
http://dx.doi.org/10.1016/j.neuropharm.2011.01.022
[97] Jakob, H. and Beckmann, H. (1986) Prenatal Developmental Disturbances in the Limbic Allocortex in Schizophrenics. Journal of Neural Transmission, 65, 303-326.
http://dx.doi.org/10.1007/BF01249090
[98] Rosoklija, G., Toomayan, G., Ellis, S.P., Keilp, J., Mann, J.J., Latov, N., Hays, A.P. and Dwork, A.J. (2000) Structural Abnormalities of Subicular Dendrites in Subjects with Schizophrenia and Mood Disorders: Preliminary Findings. JAMA Psychiatry, 57, 349-356.
http://dx.doi.org/10.1001/archpsyc.57.4.349
[99] Masliah, E. and Diez-Tejedor, E. (2012) The Pharmacology of Neurotrophic Treatment with Cerebrolysin: Brain Protection and Repair to Counteract Pathologies of Acute and Chronic Neurological Disorders. Drugs of Today, 48, 3-24.
[100] Sharma, H.S., Muresanu, D.F., Patnaik, R., Stan, A.D., Vacaras, V., Perju-Dumbrav, L., Alexandru, B., Buzoianu, A., Opincariu, I., Menon, P.K. and Sharma, A. (2011) Superior Neuroprotective Effects of Cerebrolysin in Heat Stroke Following Chronic Intoxication of Cu or Ag Engineered Nanoparticles. A Comparative Study with Other Neuroprotective Agents Using Biochemical and Morphological Approaches in the Rat. Journal of Nanoscience and Nanotechnology, 11, 7549-7569.
http://dx.doi.org/10.1166/jnn.2011.5114
[101] Ubhi, K., Rockenstein, E., Vazquez-Roque, R., Mante, M., Inglis, C., Patrick, C., Adame, A., Fahnestock, M., Doppler, E., Novak, P., Moessler, H. and Masliah, E. (2013) Cerebrolysin Modulates Pronerve Growth Factor/Nerve Growth Factor Ratio and Ameliorates the Cholinergic Deficit in a Transgenic Model of Alzheimer’s Disease. Journal of Neuroscience Research, 91, 167-177.
http://dx.doi.org/10.1002/jnr.23142
[102] Menon, P.K., Mures anu, D.F., Sharma, A., Mössler, H. and Sharma, H.S. (2012) Cerebrolysin, a Mixture of Neurotrophic Factors Induces Marked Neuroprotection in Spinal Cord Injury Following Intoxication of Engineered Nanoparticles from Metals. CNS & Neurological Disorders-Drug Targets, 11, 40-49.
http://dx.doi.org/10.2174/187152712799960781
[103] Panteleeva, G.P., Bondar’, V.V., Krasnikova, N.I. and Raiushkin, V.A. (1999) Cerebrolysin and Magnesium-B6 in the Treatment of Side Effects of Psychotropic Drugs. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, 99, 37-41.
[104] Krasnoperova, M.G., Bashina, V.M., Skvortsov, I.A. and Simashkova, N.V. (2003) The Effect of Cerebrolysin on Cognitive Functions in Childhood Autism and in Asperger Syndrome. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, 103, 15-18.
[105] Radzivil, M.G. and Bashina, V.M. (2006) An Effect of Long-Term Cerebrolysin Therapy in Combination with Neuroleptics on Behavioral and Cognitive Disturbances in Endogenous Childhood Autism. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, 106, 21-25.
[106] Xiao, S., Xue, H., Li, G., Yuan, C., Li, X., Chen, C., Wu, H.Z., Mitchell, P. and Zhang, M. (2012) Therapeutic Effects of Cerebrolysin Added to Risperidone in Patients with Schizophrenia Dominated by Negative Symptoms. Australian and New Zealand Journal of Psychiatry, 46, 153-160.
http://dx.doi.org/10.1177/0004867411433213
[107] Lipska, B.K., Jaskiw, G.E. and Weinberger, D.R. (1993) Postpubertal Emergence of Hyperresponsiveness to Stress and to Amphetamine after Neonatal Excitotoxic Hippocampal Damage: A Potential Animal Model of Schizophrenia. Neuropsychopharmacology, 9, 67-75.
http://dx.doi.org/10.1038/npp.1993.44
[108] Flores, G., Barbeau, D., Quirion, R. and Srivastava, L.K. (1996) Decreased Binding of Dopamine D3 Receptors in Limbic Subregions after Neonatal Bilateral Lesion of Rat Hippocampus. Journal of Neuroscience, 16, 2020-2026.
[109] Lipska, B.K. and Weinberger, D.R. (2000) To Model a Psychiatric Disorder in Animals: Schizophrenia as a Reality Test. Neuropsychopharmacology, 23, 223-239.
http://dx.doi.org/10.1016/S0893-133X(00)00137-8
[110] Marcotte, E.R., Pearson, D.M. and Srivastava, L.K. (2001) Animal Models of Schizophrenia: A Critical Review. Journal of Psychiatry & Neuroscience, 26, 395-410.
[111] Tseng, K.Y., Chambers, R.A. and Lipska, B.K. (2009) The Neonatal Ventral Hippocampal Lesion as a Heuristic Neurodevelopmental Model of Schizophrenia. Behavioural Brain Research, 204, 295-305.
http://dx.doi.org/10.1016/j.bbr.2008.11.039
[112] Sams-Dodd, F., Lipska, B.K. and Weinberger, D.R. (1997) Neonatal Lesions of the Rat Ventral Hippocampus Result in Hyperlocomotion and Deficits in Social Behaviour in Adulthood. Psychopharmacology, 132, 303-310.
http://dx.doi.org/10.1007/s002130050349
[113] Flores, G., Silva-Gómez, A.B., Ibáñez, O., Quirion, R. and Srivastava, L.K. (2005) Comparative Behavioral Changes in Postpubertal Rats after Neonatal Excitotoxic Lesions of the Ventral Hippocampus and the Prefrontal Cortex. Synapse, 56, 147-153.
http://dx.doi.org/10.1002/syn.20140
[114] Le Pen, G. and Moreau, J.L. (2002) Disruption of Prepulse Inhibition of Startle Reflex in a Neurodevelopmental Model of Schizophrenia: Reversal by Clozapine, Olanzapine and Risperidone but Not by Haloperidol. Neuropsychopharmacology, 27, 1-11.
http://dx.doi.org/10.1016/S0893-133X(01)00383-9
[115] Le Pen, G., Kew, J., Alberati, D., Borroni, E., Heitz, M.P. and Moreau, J.L. (2003) Prepulse Inhibition Deficits of the Startle Reflex in Neonatal Ventral Hippocampal-Lesioned Rats: Reversal by Glycine and a Glycine Transporter Inhibitor. Biological Psychiatry, 54, 1162-1670.
http://dx.doi.org/10.1016/S0006-3223(03)00374-3
[116] Chambers, R.A., Moore, J., McEvoy, J.P. and Levin, E.D. (1996) Cognitive Effects of Neonatal Hippocampal Lesions in a Rat Model of Schizophrenia. Neuropsychopharmacology, 15, 587-594.
http://dx.doi.org/10.1016/S0893-133X(96)00132-7
[117] Silva-Gómez, A.B., Bermudez, M., Quirion, R., Srivastava, L.K., Picazo, O. and Flores, G. (2003) Comparative Behavioral Changes between Male and Female Postpubertal Rats Following Neonatal Excitotoxic Lesions of the Ventral Hippocampus. Brain Research, 973, 285-292.
http://dx.doi.org/10.1016/S0006-8993(03)02537-X
[118] Lipska, B.K., Khaing, Z.Z., Weickert, C.S. and Weinberger, D.R. (2001) BDNF mRNA Expression in Rat Hippocampus and Prefrontal Cortex: Effects of Neonatal Ventral Hippocampal Damage and Antipsychotic Drugs. European Journal of Neuroscience, 14, 135-144.
http://dx.doi.org/10.1046/j.1460-9568.2001.01633.x
[119] Molteni, R., Lipska, B.K., Weinberger, D.R., Racagni, G. and Riva, M.A. (2001) Developmental and Stress-Related Changes of Neurotrophic Factor Gene Expression in an Animal Model of Schizophrenia. Molecular Psychiatry, 6, 285-292.
http://dx.doi.org/10.1038/sj.mp.4000865
[120] Bhardwaj, S.K., Beaudry, G., Quirion, R., Levesque, D. and Srivastava, L.K. (2003) Neonatal Ventral Hippocampus Lesion Leads to Reductions in Nerve Growth Factor Inducible-B mRNA in the Prefrontal Cortex and Increased Amphetamine Response in the Nucleus Accumbens and Dorsal Striatum. Neuroscience, 122, 669-676.
http://dx.doi.org/10.1016/j.neuroscience.2003.08.016
[121] Benes, F.M. (2010) Amygdalocortical Circuitry in Schizophrenia: From Circuits to Molecules. Neuropsychopharmacology, 35, 239-257.
http://dx.doi.org/10.1038/npp.2009.116
[122] Martinotti, G., Di Iorio, G., Marini, S., Ricci, V., De Berardis, D. and Di Giannantonio, M. (2012) Nerve Growth Factor and Brain-Derived Neurotrophic Factor Concentrations in Schizophrenia: A Review. Journal of Biological Regulators and Homeostatic Agents, 26, 347-356.
[123] Ikegame, T., Bundo, M., Sunaga, F., Asai, T., Nishimura, F., Yoshikawa, A., Kawamura, Y., Hibino, H., Tochigi, M., Kakiuchi, C., Sasaki, T., Kato, T., Kasai, K. and Iwamoto, K. (2013) DNA Methylation Analysis of BDNF Gene Promoters in Peripheral Blood Cells of Schizophrenia Patients. Neuroscience Research, 77, 208-214.
http://dx.doi.org/10.1016/j.neures.2013.08.004
[124] Lee, B.H. and Kim, Y.K. (2009) Increased Plasma Brain-Derived Neurotropic Factor, Not Nerve Growth Factor-Beta, in Schizophrenia Patients with Better Response to Risperidone Treatment. Neuropsychobiology, 59, 51-58.
http://dx.doi.org/10.1159/000205518
[125] Zhang, X.Y., Liang, J., Chen, D.C., Xiu, M.H., Yang, F.D., Kosten, T.A. and Kosten, T.R. (2012) Low BDNF Is Associated with Cognitive Impairment in Chronic Patients with Schizophrenia. Psychopharmacology, 222, 277-284.
http://dx.doi.org/10.1007/s00213-012-2643-y
[126] Ciobica, A., Padurariu, M., Dobrin, I., Stefanescu, C. and Dobrin, R. (2011) Oxidative Stress in Schizophrenia—Focusing on the Main Markers. Psychiatria Danubina, 23, 237-245.
[127] Smith, M.A. (2006) Oxidative Stress and Iron Imbalance in Alzheimer Disease: How Rust Became the Fuss! Journal of Alzheimer’s Disease, 9, 305-308.
[128] Sultana, R., Piroddi, M., Galli, F. and Butterfield, D.A. (2008) Protein Levels and Activity of Some Antioxidant Enzymes in Hippocampus of Subjects with Amnestic Mild Cognitive Impairment. Neurochemical Research, 33, 2540-2546.
http://dx.doi.org/10.1007/s11064-008-9593-0
[129] Hritcu, L., Ciobica, A., Stefan, M., Mihasan, M., Palamiuc, L. and Nabeshima, T. (2011) Spatial Memory Deficits and Oxidative Stress Damage Following Exposure to Lipopolysaccharide in a Rodent Model of Parkinson’s Disease. Neuroscience Research, 71, 35-43.
http://dx.doi.org/10.1016/j.neures.2011.05.016
[130] Flatow, J., Buckley, P. and Miller, B.J. (2013) Meta-Analysis of Oxidative Stress in Schizophrenia. Biological Psychiatry, 74, 400-409.
http://dx.doi.org/10.1016/j.biopsych.2013.03.018
[131] Mahadik, S.P., Evans, D. and Lal, H. (2001) Oxidative Stress and Role of Antioxidant and ω-3 Essential Fatty Acid Supplementation in Schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 25, 463-493.
http://dx.doi.org/10.1016/S0278-5846(00)00181-0
[132] Yao, J.K. and Keshavan, M.S. (2011) Antioxidants, Redox Signaling, and Pathophysiology in Schizophrenia: An Integrative View. Antioxidants & Redox Signaling, 15, 2011-2035.
http://dx.doi.org/10.1089/ars.2010.3603
[133] González, M.E., Francis, L. and Castellano, O. (1998) Antioxidant Systemic Effect of Short-Term Cerebrolysin® Administration. Journal of Neural Transmission, 53, 333-341.
http://dx.doi.org/10.1007/978-3-7091-6467-9_29
[134] Patterson, P.H. (2011) Maternal Infection and Immune Involvement in Autism. Trends in Molecular Medicine, 17, 389-394.
http://dx.doi.org/10.1016/j.molmed.2011.03.001
[135] Aguirre, A., Maturana, C.J., Harcha, P.A. and Sáez, J.C. (2013) Possible Involvement of TLRs and Hemichannels in Stress-Induced CNS Dysfunction via Mastocytes, and Glia Activation. Mediators of Inflammation, 2013, 1-17, Article ID: 893521.
[136] Atzori, M., Garcia-Oscos, F. and Mendez, J.A. (2012) Role of IL-6 in the Etiology of Hyperexcitable Neuropsychiatric Conditions: Experimental Evidence and Therapeutic Implications. Future Medicinal Chemistry, 4, 2177-2192.
http://dx.doi.org/10.4155/fmc.12.156
[137] Suvisaari, J. and Mantere, O. (2013) Inflammation Theories in Psychotic Disorders: A Critical Review. Infectious Disorders-Drug Targets, 13, 59-70.
http://dx.doi.org/10.2174/18715265112129990032
[138] Belokrylov, G.A. and Malchanova, I.V. (1992) Levamin and Cerebrolysin as Immunostimulants. Biulleten’ Eksperimental’noi Biologii i Meditsiny, 113, 165-166.
[139] Sotnikova, N.Y., Gromova, O.A., Novikova, E.A. and Burtsev, E.M. (2000) Immunoactive Properties of Cerebrolysin. Russian Journal of Immunology, 5, 63-70.
[140] Garmanchuk, L.V., Perepelitsyna, E.M., Sidorenko, M.V., Makarenko, A.N. and Kul’chikov, A.E. (2009) Cytoprotective Effect of Neuropeptides on Immunocompetent Cells (in Vitro Study). Eksperimental’naia i Klinicheskaia Farmakologiia, 72, 28-32.
[141] West, A.E., Pruunsild, P. and Timmusk, T. (2014) Neurotrophins: Transcription and Translation. Handbook of Experimental Pharmacology, 220, 67-100.
http://dx.doi.org/10.1007/978-3-642-45106-5_4

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.