Share This Article:

From Chern-Simon, Holography and Scale Relativity to Dark Energy

Abstract Full-Text HTML Download Download as PDF (Size:264KB) PP. 634-638
DOI: 10.4236/jamp.2014.27069    7,733 Downloads   10,620 Views   Citations

ABSTRACT

Chern-Simon theory and the holographic principle as well as scale relativity are used to find out the exact value of cosmic ordinary and dark energy density. The result agrees completely with previously obtained ones as well as with accurate cosmic measurements.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Naschie, M. (2014) From Chern-Simon, Holography and Scale Relativity to Dark Energy. Journal of Applied Mathematics and Physics, 2, 634-638. doi: 10.4236/jamp.2014.27069.

References

[1] Linder, E.V. (2007) Resource Letter: Dark Energy and Accelerating Universe.
arXiv: 0705.4102V1[astroph].
[2] Perlmutter, S. and Schmidt, B. (2003) Measuring Cosmology with Supernova. arXiv: astroph/0303428V1.
[3] Linder, E.V. (2010) Einstein’s Other Gravity and the Acceleration of the Universe.
arXiv: 1005.3039V2[astro-hy.co].
[4] El Naschie, M.S. (2013) A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory. Journal of Quantum Information Science, 3, 23-26.
[5] El Naschie, M.S. (2013) Quantum Gravity and Dark Energy via a New Planck Scale. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 106-119.
[6] El Naschie, M.S. (2014) Dark Energy via a Quantum Field Theory in Curved Spacetime. Journal of Modern Physics and Applications, 1, 1-7.
[7] El Naschie, M.S. (2013) From Yang-Mills Photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126.
[8] Marek-Crnjac, L., et al. (2013) Chaotic Fractal Tiling for the Missing Dark Energy and Veneziano Model. Applied Mathematics, 4, 22-29.
[9] El Naschie, M.S. (2013) A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493.
[10] El Naschie, M.S. (2013) Experimentally Based Theoretical Arguments that Unruh’s Temperature, Hawking’s Vacuum Fluctuation and Rindler’s Wedge Are Physically Real. American Journal of Modern Physics, 2, 357-361.
[11] Marek-Crnjac, L. and He, J.-H. (2013) An Invitation to El Naschie’s Theory of Cantorian Spacetime and Dark Energy. International Journal of Astronomy and Astrophysics, 3, 464-471.
[12] Marek-Crnjac, L. and El Naschie, M.S. (2013) Quantum Gravity and Dark Energy Using Fractal Planck Scaling. Journal of Modern Physics, 4, 31-38.
[13] Nottale, L. (1998) Fractal Spacetime and Microphysics. Towards a Theory of Scale Relativity. World Scientific, Singapore.
[14] El Naschie, M.S. (2008) Removing Spurious Non-Linearity in the Structure of Micro-Spacetime and Quantum Field Renormalization. Chaos, Solitons & Fractals, 37, 60-64.
[15] El Naschie, M.S. (2008) Mathematical Foundations of E-Infinity via Coxeter and Reflection Groups. Chaos, Solitons & Fractals, 37, 1267-1268.
[16] El Naschie, M.S. (2004) A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9
[17] El Naschie, M.S. (2000) Scale Relativity in Cantorian E-Infinity Space-Time. Chaos, Solitons & Fractals, 11, 2391-2395. http://dx.doi.org/10.1016/S0960-0779(99)00209-X
[18] El Naschie, M.S. (2003) Modular Groups in Cantorian E-Infinity High-Energy Physics. Chaos, Solitons & Fractals, 16, 353-366. http://dx.doi.org/10.1016/S0960-0779(02)00440-X
[19] El Naschie, M.S. (2008) Notes on Exceptional Lie Symmetry Groups Hierarchy and Possible Implications for E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 35, 69-70.
[20] El Naschie, M.S. (2008) Fuzzy Multi-Instanton Knots in the Fabric of Space-Time and Dirac’s Vacuum Fluctuation. Chaos, Solitons & Fractals, 38, 1260-1268. http://dx.doi.org/10.1016/j.chaos.2008.07.010
[21] El Naschie, M.S., He, J.H., Nada, S., Marek-Crnjac, L. and Helal, M.A. (2012) Golden Mean Computer for High Energy Physics. Fractal Spacetime and Noncommutative Geometry in High Energy Physics, 2, 80-92.
[22] He, J.H. (2005) Transfinite Physics. A Collection of Publications on E-Infinity Cantorian Spacetime Theory. China Scientific & Cultural Publishing, Beijing.
[23] Duff, M.J. (1999) The World in Eleven Dimensions. Institute of Physics Publications, Bristol.
[24] Witten, E. (1998) 2 + 1 Dimensional Gravity as an Exactly Soluble System. Nuclear Physics B, 311, 46-78.
http://dx.doi.org/10.1016/0550-3213(88)90143-5
[25] Kutasov, D. and Seiberg, N. (1991) Number of Degrees of Freedom, Density of States and Tachyons in String Theory and CFT. Nuclear Physics B, 358, 600-618.
http://dx.doi.org/10.1016/0550-3213(91)90426-X
[26] El Naschie, M.S., et al. (2012) On the Need for Fractal Logic in High Energy Quantum Physics. International Journal of Modern Nonlinear Theory and Application, 1, 84-92.
http://dx.doi.org/10.4236/ijmnta.2012.13012
[27] El Naschie, M.S. (2008) Extended Renormalization Group Analysis for Quantum Gravity and Newton’s Gravitation Constant. Chaos, Solitons & Fractals, 35, 425-431.
http://dx.doi.org/10.1016/j.chaos.2007.07.059
[28] El Naschie, M.S. (2008) Transfinite Harmonization by Taking the Dissonance out of the Quantum Field Symphony. Chaos, Solitons & Fractals, 36, 781-786. http://dx.doi.org/10.1016/j.chaos.2007.09.018
[29] El Naschie, M.S. (2008) An Outline for a Quantum Golden Field Theory. Chaos, Solitons & Fractals, 37, 317-323.
http://dx.doi.org/10.1016/j.chaos.2007.09.092
[30] El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646. http://dx.doi.org/10.1016/j.chaos.2008.09.059
[31] Kaku, M. (1999) Introduction to Superstrings and M-Theory. Springer, New York.
http://dx.doi.org/10.1007/978-1-4612-0543-2
[32] El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084
[33] El Naschie, M.S. (2013) Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method. Journal of Modern Physics, 4, 757-760. http://dx.doi.org/10.4236/jmp.2013.46103
[34] El Naschie, M.S. (2013) A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light. International Journal of Modern Nonlinear Theory and Application, 2, 43-54. http://dx.doi.org/10.4236/ijmnta.2013.21005
[35] El Naschie, M.S. (2013) Nash Embedding of Witten’s M-Theory and the Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4, 1417-1428. http://dx.doi.org/10.4236/jmp.2013.410170
[36] Helal, M.A., Marek-Crnjac, L. and He, J.H. (2013) The Three Page Guide to the Most Important Results of M.S. El Naschie’s Research in E-Infinity and Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145.
http://dx.doi.org/10.4236/ojm.2013.34020
[37] El Naschie, M.S. (2011) The Fractal Geometric Origin of Quantum Mechanics from Hardy’s Quantum Entanglement. International Journal of E-Infinity and Complexity Theory in High Energy Physics and Engineering, 1, 1-7.
[38] Marek-Crnjac, L. (2013) Cantorian Space-Time Theory—The Physics of Empty Sets in Connection with Quantum Entanglement and Dark Energy. Lambert Academic Publishing, Saarbrücken.
[39] Christianto, V. (2003) The Cantorian Super Fluid Vortex Hypothesis. Apeiron, 10, 231-248.
[40] Rubakov, V.A. (2001) Large and Infinite Extra Dimensions. Physics-Uspekhi, 44, 871-893.
http://dx.doi.org/10.1070/PU2001v044n09ABEH001000
[41] El Naschie, M.S. (2014) Capillary Surface Energy Elucidation of the Cosmic Dark Energy—Ordinary Energy Duality. Open Journal of Fluid Dynamics, 4, 15-17. http://dx.doi.org/10.4236/ojfd.2014.41002
[42] El Naschie, M.S. (2014) Pinched Material Einstein Space-Time Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90.
http://dx.doi.org/10.4236/ijaa.2014.41009
[43] El Naschie, M.S. (2014) Logarithmic Running of ‘t Hooft-Polyakov Monopole to Dark Energy. International Journal of High Energy Physics, 1, 1-5.
[44] El Naschie, M.S. (2014) Cosmic Dark Energy from ’t Hooft’s Dimensional Regularization and Witten’s Topological Quantum Field Pure Gravity. Journal of Quantum Information Science, in Press.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.