[1]
|
Gea, H., McClungb, V.R. and Zhangc, S. (2013) Impact of Balcony Thermal Bridges on the Overall Thermal Performance of Multi-Unit Residential Buildings: A Case Study. Energy and Buildings, 60, 163-173.
http://dx.doi.org/10.1016/j.enbuild.2013.01.004
|
[2]
|
Larbi, A.B. (2005) Statistical Modelling of Heat Transfer for Thermal Bridges of Buildings. Energy and Buildings, 37, 945-951. http://dx.doi.org/10.1016/j.enbuild.2004.12.013
|
[3]
|
Asdrubali, F., Baldinelli, G. and Bianchi, F. (2012) A Quantitative Methodology to Evaluate Thermal Bridges in Buildings. Applied Energy, 97, 365-373. http://dx.doi.org/10.1016/j.apenergy.2011.12.054
|
[4]
|
Zalewskia, L., Lassuea, S., Roussec, D. and Boukhalfaa, K. (2010) Experimental and Numerical Characterization of Thermal Bridges in Prefabricated Building Walls. Energy Conversion and Management, 51, 2869-2877.
http://dx.doi.org/10.1016/j.enconman.2010.06.026
|
[5]
|
Al-Sanea, S.A. and Zedan, M.F. (2012) Effect of Thermal Bridges on Transmission Loads and Thermal Resistance of building Walls under Dynamic Conditions. Applied Energy, 98, 584-593.
http://dx.doi.org/10.1016/j.apenergy.2012.04.038
|
[6]
|
Mlakara, J. and Strancarb, J. (2013) Temperature and Humidity Profiles in Passive-House Building Blocks. Building and Environment, 60, 185-193. http://dx.doi.org/10.1016/j.buildenv.2012.11.018
|
[7]
|
Crawford R.H. and Stephan, A. (2013) The Significance of Embodied Energy in Certified Passive Houses. World Academy of Science, Engineering and Technology, 78.
|
[8]
|
EN ISO 14683:2007—Thermal Bridges in Building Constructions—Linear Thermal Transmittances—Simplified Methods and Default Values, SIS, Brussels, Belgium, 2007.
|
[9]
|
EN ISO 10211:2007—Thermal Bridges in Building Construction—Heat Flows and Surface Temperatures—Detailed Calculations), SIS, Brussels, Belgium, 2007.
|
[10]
|
Blomberg, T. (2000) HEAT2. A PC-Program for Heat Transfer in Two Dimensions. Manual with Brief Theory and Examples [online]. http://www.buildingphysics.com/manuals/HEAT2_5.pdf
|
[11]
|
Hagentoft, C.E. (2010) Introduction to Building Physics. Studentlitteratur, AB, Lund.
|
[12]
|
The Institution of Structural Engineers (TISE) (2010) Manual for the Design of Building Structures to Eurocode 1 and Basis of Structural Design. UK.
|
[13]
|
EN 1991-1: Eurocode 1 (2005) Actions on Structures—Part 1-4: General Actions: Part 1-1: General Actions— Densities, Self-Weight, Imposed Loads for Buildings, Part 1-3: General actions—Snow Loads, Eurocode 1: Actions on Structures—Part 1-4: General actions—Wind Actions. The European Union.
|
[14]
|
Hassan, O.A.B. (2013) An Alternative Method for Evaluating the Air Tightness of Building Components. Building and Environment, 67, 82-86. http://dx.doi.org/10.1016/j.buildenv.2013.05.007
|
[15]
|
ASHRAE, Standard 119 (1988) Air Leakage Performance for Detached Single-Family Residential Buildings. American Society of Heating, Refrigerating and Air Conditioning Engineers.
|
[16]
|
Passivhuscentrum (2009) FEBY Kriteriejämförelse av Passivhus.
http://www.passivhuscentrum.se/sites/default/files/jamforelse_mellan_svenska_och_ internationella_passivhuskriterier_0.pdf
|
[17]
|
Andrén, L. andTirén, L. (2012) Passivhus: En handbok om energieffektivt byggande. Svensk Byggtjänst.
|
[18]
|
Bokalders, V. and Block, M. (2009) Byggekologi: Kunskaper för ett hållbart byggande. Svensk Byggtjänst, Stockholm.
|
[19]
|
Steico (2013) Steico Universal Sarking and Sheating Boards.
http://www.steico.com/fileadmin/steico/content/pdf/Marketing/UK/Product_information/ universal/STEICOuniversal_en_i.pdf
|
[20]
|
Fröbel, J. and Beyer, G. (red.) (2004) Att välja trä: trävaror och träprofiler till bygget. Skogsindustrierna, Stockholm.
|
[21]
|
Jonsson, P. (2013) En alternative lösning till yttervägger i ett passivhus. B.Sc Thesis, UmeåUniversity, Umeå.
|
[22]
|
Burström, P.G. (2007) Byggnadsmaterial: Uppbyggnad, tillverkning och egenskaper. Studentlitteratur, Lund.
|
[23]
|
Egger (2013) Egger Construction. Wood Based Panels for Use in Timber Construction.
http://www.egger.com/downloads/bildarchiv/37000/1_37753_BR_EGGER-HOLZBAU_EN.pdf
|
[24]
|
Egger (2013) Naturally Egger. Sustainable Construction and Healthy Living with Egger Wood-Based Materials.
http://www.egger.com/downloads/bildarchiv/37000/1_37654_BR_Environment-Sustainability_EN.pdf
|
[25]
|
iCell (2013) Insulation Technology. Made in Sweden.
http://www.icell.nu/filer/iCell-cellulosa-isolering-broschyr-02.pdf
|
[26]
|
Petersson, B. (2009) Tillämpad byggnadsfysik. Studentlitteratur, Lund.
|
[27]
|
Hassan, O. (2012) Kompendiums i byggnasmaterial. Institute of Applied Physics and Electronics, Umeå University, Umeå.
|
[28]
|
Byggvarudeklaration BVD3(2007) Enligt kretsloppsrådets riktlinjer 2007. Leca ISO-block Rex.
http://www.weber.se/uploads/tx_weberproductpage/8b16ac501f3845aabbda39cb248e65ea.pdf
|
[29]
|
Byggvarudeklaration BVD3 (2007) Enligt kretsloppsrådets riktlinjer 2007. Weber.therm 342 fasadbruk.
http://www.weber.se/uploads/tx_weberproductpage/bbf9cb229911447c968b990ab5804b3a.pdf
|
[30]
|
Weber (2013) Leca Block Projekteringsanvisning.
http://www.weber.se/fileadmin/user_upload/pdf/leca/arbanv/leca_isoblock_projektering.pdf
|
[31]
|
Weber (2013) Produktblad Leca ISO-block Rex.
http://www.weber.se/uploads/tx_weberproductpage/printable_sheet_Leca_reg__Isoblock_Rex.pdf.
|
[32]
|
Weber (2013) Produktblad Serporoc. Sevriges ledande fasadsystem.
http://www.weber.se/fileadmin/user_upload/pdf/fasad/broschyrer/serporoc.pdf
|
[33]
|
Passive House Institute (PHI) Thermal Bridges.
http://passipedia.passiv.de/passipedia_en/basics/building_physics_-_basics/heat_transfer/thermal_bridges
|