Lecablock, an Alternative Construction Material for the Exterior Walls of Passive House


In this paper it is attempted to investigate the Leca blocks as sustainable construction material for the exterior walls of passive house. The building physical properties of Leca design wall structure are studied along with the environmental impact and load-bearing capacity. To compare the results, a similar analysis is carried out considering the traditional wooden wall construction of passive houses. The results showed that Leca design wall structure can be an alternative sustainable solution to the traditional wooden wall structure of passive house, mainly due to its low U-value, its ability to handle moisture, and comparable structural load-bearing capacity. However, the wooden wall structure is more environmentally friendly than the Leca blocks due to its lower emissions to the environment and reduced energy use, especially during the manufacturing process.

Share and Cite:

Hassan, O. and Jonsson, P. (2014) Lecablock, an Alternative Construction Material for the Exterior Walls of Passive House. Journal of Building Construction and Planning Research, 2, 96-108. doi: 10.4236/jbcpr.2014.22009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Gea, H., McClungb, V.R. and Zhangc, S. (2013) Impact of Balcony Thermal Bridges on the Overall Thermal Performance of Multi-Unit Residential Buildings: A Case Study. Energy and Buildings, 60, 163-173.
[2] Larbi, A.B. (2005) Statistical Modelling of Heat Transfer for Thermal Bridges of Buildings. Energy and Buildings, 37, 945-951. http://dx.doi.org/10.1016/j.enbuild.2004.12.013
[3] Asdrubali, F., Baldinelli, G. and Bianchi, F. (2012) A Quantitative Methodology to Evaluate Thermal Bridges in Buildings. Applied Energy, 97, 365-373. http://dx.doi.org/10.1016/j.apenergy.2011.12.054
[4] Zalewskia, L., Lassuea, S., Roussec, D. and Boukhalfaa, K. (2010) Experimental and Numerical Characterization of Thermal Bridges in Prefabricated Building Walls. Energy Conversion and Management, 51, 2869-2877. http://dx.doi.org/10.1016/j.enconman.2010.06.026
[5] Al-Sanea, S.A. and Zedan, M.F. (2012) Effect of Thermal Bridges on Transmission Loads and Thermal Resistance of building Walls under Dynamic Conditions. Applied Energy, 98, 584-593.
[6] Mlakara, J. and Strancarb, J. (2013) Temperature and Humidity Profiles in Passive-House Building Blocks. Building and Environment, 60, 185-193. http://dx.doi.org/10.1016/j.buildenv.2012.11.018
[7] Crawford R.H. and Stephan, A. (2013) The Significance of Embodied Energy in Certified Passive Houses. World Academy of Science, Engineering and Technology, 78.
[8] EN ISO 14683:2007—Thermal Bridges in Building Constructions—Linear Thermal Transmittances—Simplified Methods and Default Values, SIS, Brussels, Belgium, 2007.
[9] EN ISO 10211:2007—Thermal Bridges in Building Construction—Heat Flows and Surface Temperatures—Detailed Calculations), SIS, Brussels, Belgium, 2007.
[10] Blomberg, T. (2000) HEAT2. A PC-Program for Heat Transfer in Two Dimensions. Manual with Brief Theory and Examples [online]. http://www.buildingphysics.com/manuals/HEAT2_5.pdf
[11] Hagentoft, C.E. (2010) Introduction to Building Physics. Studentlitteratur, AB, Lund.
[12] The Institution of Structural Engineers (TISE) (2010) Manual for the Design of Building Structures to Eurocode 1 and Basis of Structural Design. UK.
[13] EN 1991-1: Eurocode 1 (2005) Actions on Structures—Part 1-4: General Actions: Part 1-1: General Actions— Densities, Self-Weight, Imposed Loads for Buildings, Part 1-3: General actions—Snow Loads, Eurocode 1: Actions on Structures—Part 1-4: General actions—Wind Actions. The European Union.
[14] Hassan, O.A.B. (2013) An Alternative Method for Evaluating the Air Tightness of Building Components. Building and Environment, 67, 82-86. http://dx.doi.org/10.1016/j.buildenv.2013.05.007
[15] ASHRAE, Standard 119 (1988) Air Leakage Performance for Detached Single-Family Residential Buildings. American Society of Heating, Refrigerating and Air Conditioning Engineers.
[16] Passivhuscentrum (2009) FEBY Kriteriejämförelse av Passivhus.
[17] Andrén, L. andTirén, L. (2012) Passivhus: En handbok om energieffektivt byggande. Svensk Byggtjänst.
[18] Bokalders, V. and Block, M. (2009) Byggekologi: Kunskaper för ett hållbart byggande. Svensk Byggtjänst, Stockholm.
[19] Steico (2013) Steico Universal Sarking and Sheating Boards.
[20] Fröbel, J. and Beyer, G. (red.) (2004) Att välja trä: trävaror och träprofiler till bygget. Skogsindustrierna, Stockholm.
[21] Jonsson, P. (2013) En alternative lösning till yttervägger i ett passivhus. B.Sc Thesis, UmeåUniversity, Umeå.
[22] Burström, P.G. (2007) Byggnadsmaterial: Uppbyggnad, tillverkning och egenskaper. Studentlitteratur, Lund.
[23] Egger (2013) Egger Construction. Wood Based Panels for Use in Timber Construction.
[24] Egger (2013) Naturally Egger. Sustainable Construction and Healthy Living with Egger Wood-Based Materials.
[25] iCell (2013) Insulation Technology. Made in Sweden.
[26] Petersson, B. (2009) Tillämpad byggnadsfysik. Studentlitteratur, Lund.
[27] Hassan, O. (2012) Kompendiums i byggnasmaterial. Institute of Applied Physics and Electronics, Umeå University, Umeå.
[28] Byggvarudeklaration BVD3(2007) Enligt kretsloppsrådets riktlinjer 2007. Leca ISO-block Rex.
[29] Byggvarudeklaration BVD3 (2007) Enligt kretsloppsrådets riktlinjer 2007. Weber.therm 342 fasadbruk.
[30] Weber (2013) Leca Block Projekteringsanvisning.
[31] Weber (2013) Produktblad Leca ISO-block Rex.
[32] Weber (2013) Produktblad Serporoc. Sevriges ledande fasadsystem.
[33] Passive House Institute (PHI) Thermal Bridges.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.