[1]
|
Isidori, A. (1995) Nonlinear Control Systems. 3rd Edition, Springer-Verlag, London.
http://dx.doi.org/10.1007/978-1-84628-615-5
|
[2]
|
Sastry, S.S. (1999) Nonlinear Systems. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4757-3108-8
|
[3]
|
Cortés, J. (2002) Geometric, Control and Numerical Aspects of Nonholonomic Systems. Springer-Verlag, Berlin Heidelberg. http://dx.doi.org/10.1007/b84020
|
[4]
|
Bloch, A.M. (2003) Nonholonomic Mechanics and Control. Springer-Verlag, New York.
http://dx.doi.org/10.1007/b97376
|
[5]
|
Bullo, F. and Rewis, A.D. (2004) Geometric Control of Mechanical Systems. Springer Science+business Media, Inc.
|
[6]
|
Montgomery, R. (2002) A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society.
|
[7]
|
Calin, O. and Change, D.C. (2009) Sub-Riemannian Geometry: General Theory and Examples. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9781139195966
|
[8]
|
Kai, T. and Kimura, H. (2006) Theoretical Analysis of Affine Constraints on a Configuration Manifold—Part I: Integrability and Nonintegrability Conditions for Affine Constraints and Foliation Structures of a Configuration Manifold. Transactions of the Society of Instrument and Control Engineers, 42, 212-221.
|
[9]
|
Kai, T. (2011) Integrating Algorithms for Integrable Affine Constraints. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E94-A, 464-467.
|
[10]
|
Kai, T. (2012) Mathe-matical Modelling and Theoretical Analysis of Nonholonomic Kinematic Systems with a Class of Rheonomous Affine Constraints. Applied Mathematical Modelling, 36, 3189-3200.
http://dx.doi.org/10.1016/j.apm.2011.10.015
|
[11]
|
Kai, T. (2012) Theoretical Analysis for a Class of Rheonomous Affine Constraints on Configuration Manifolds—Part I: Fundamental Properties and Integrability/Nonintegrability Conditions. Mathemati-cal Problems in Engineering, 2012, Article ID: 543098.
|
[12]
|
Kai, T. (2012) Theoretical Analysis for a Class of Rheonomous Affine Constraints on Configuration Manifolds—Part II: Foliation Structures and Integrating Algorithms. Mathematical Problems in Engineering, 2012, Article ID: 345942.
|
[13]
|
Kai, T. (2013) On Integrability of Fully Rheonomous Affine Constraints. International Journal of Modern Nonlinear Theory and Application, 2, 130-134. http://dx.doi.org/10.4236/ijmnta.2013.22016
|
[14]
|
Kai, T. (2013) An Integrating Algorithm and Theoretical Analysis for Fully Rheonomous Affine Constraints: Completely Integrable Case. Applied Mathematics, 4, 1720-1725. http://dx.doi.org/10.4236/am.2013.412235
|
[15]
|
Nomizu, S. and Kobayashi, K. (1996) Foundations of Differential Geometry Volume I. Wiley-Inter-science.
|
[16]
|
Nomizu, S. and Kobayashi, K. (1996) Foundations of Differential Geometry Volume II. Wiley-Inter-science.
|