Share This Article:

The Dominant Role of the Chemical Potential for Driving Currents in Oceans and Air

Abstract Full-Text HTML Download Download as PDF (Size:333KB) PP. 117-125
DOI: 10.4236/gep.2014.23016    2,346 Downloads   3,156 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Applying the thermodynamic zeros of the entropy  and internal energy  of the gas mass  in the volume  yields the numerically unique relation between these quantities, thus allowing calculation of the chemical potential in the gas fields of temperature  and pressure , viz. . A difference in chemical potential provides a force for freely moving matter flow. Since  is intrinsically a negative function, decreasing as the temperature increases, natural flow processes are initiated by high  values in cold regions directed to low

KEYWORDS

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Elsner, A. (2014) The Dominant Role of the Chemical Potential for Driving Currents in Oceans and Air. Journal of Geoscience and Environment Protection, 2, 117-125. doi: 10.4236/gep.2014.23016.

References

[1] Allen, J. F., & Jones, H. (1938). New Phenomena Connected with Heat Flow in He-II. Nature, 141, 243-244. http://dx.doi.org/10.1038/141243a0
[2] Apel, J. R. (1987). Principles of Ocean Physics. Academic Press, Chapters 1.2, 2, 3, 4, 6.
[3] Baretta-Bekker, Duursma, & Kuipers (1998). Encyclopedia of Marine Sciences. Springer, 110.
[4] Brockhaus, V. (2012). Wissenswelten: Geografie, Natur, Klima. Mohn Media, 596-600.
[5] Businger, J. A. (1992). Ocean-Atmosphere Dynamics, Equations (1)-(7). In R. A. Meyers, Ed., Encyclopedia of Physical Science and Technology (Vol. 11). Academic Press.
[6] Callen, H.B. (1960). Thermodynamics. John Wiley & Sons, Chapters 3.2, 3.3, 6.4, 16.
[7] Elsner, A. (2012). Applied Thermodynamics of the Real Gas with Respect to the Thermodynamic Zeros of the Entropy and Internal Energy. Physica B: Physics of Condensed Matter, 407, 1055-1067. http://dx.doi.org/10.1016/j.physb.2011.12.118
[8] Oertel Jr., H. (2002). Prandtl-Führer durch die Strömungslehre. Vieweg, 11. Auflage, Chapters 4.1.1, 5.1, 5.2.1, 12.2.4, 12.4.1.
[9] von der Heydt, A. (2011). Die Physik der Ozeanströme. Physik Journal, 10, 23-29.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.