Magnetic Method Surveying and Its Application for the Concealed Ore-Bodies Prospecting of Laba Porphyry Molybdenum Ore Field in Shangri-La, Northwestern Yunnan Province, China

Abstract

Recently, a number of large molybdenum (-copper) deposits have been discovered successively in the Laba area, Shangri-La county, northwestern Yunnan province. The investigation confirmed that there is a superlarge porphyry-skarn hydrothermal vein type molybdenum-polymetallic- metallogenic system with the total prediction reservoir of more than 150 mt molybdenum. The porphyry intrusions contributed to the mineralization closely, the superficial little vein molybdenum (-copper, lead, silver) ore-bodies are usually located in faults and fractures, and the deep porphyry type ore-bodies occurred in the granodiorite porphyries, the skarn type ore-bodies occurred in the contact zone intrused into Triassic limestone or Permian basalts. Laba ore block is a new exploration area with great prospecting potential. In order to reduce the target area and guide the further exploration work, the magnetic method measurement about 3.3 square kilometres was carried out in the ore field. This paper presents an application of analyzing the horizontal and vertical derivative, using Fast Fourier Transform (FFT) filter (FFT high-pass, low-pass, cosine roll-off, suscepbility), calculated spectra frequency energy to predict the depth and intensity of the apparent remanence magnetization of source (Hilbert). The calculated results and magnetic anomalous show that the remanence anomaly is caused by the intrusions into the Triassic limestone and Permian basalts with small anomalies, and the depth of located source is not great. We have identified a number of positions to the three drilled well, the drilled result specify interpretation with very high accuracy. The magnetic method is helpful to identify porphyry mineralization, and judge the shape and depth of the concealed ore-bearing intrusive bodies under the similar geological condition.

Share and Cite:

Dai, N. , Xue, C. , Xiang, K. , Xiang, K. , Lap, T. , Akhter, Q. and Li, S. (2014) Magnetic Method Surveying and Its Application for the Concealed Ore-Bodies Prospecting of Laba Porphyry Molybdenum Ore Field in Shangri-La, Northwestern Yunnan Province, China. Journal of Geoscience and Environment Protection, 2, 46-53. doi: 10.4236/gep.2014.23006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Alanna, C. D., & Yára, R. M. (2009). Gravity and Magnetic 3D Inversion of Morro do Engenho Complex, Central Brazil. Journal of South American Earth Sciences, 28, 193-203. http://dx.doi.org/10.1016/j.jsames.2009.02.006
[2] Eun-Jung, H., Shih, C., Peter, K., Michael, D., Barry, B., & Matthew, H. (2011). Automatic Identification of Responses from Porphyry Intrusive Systems within Magnetic Data Using Image Analysis. Journal of Applied Geophysics, 74, 255-262. http://dx.doi.org/10.1016/j.jappgeo.2011.06.016
[3] Fabio, C. T. (2012). Rapid Interactive Modeling of 3D Magnetic Anomalies. Computers & Geosciences, 48, 308-315. http://dx.doi.org/10.1016/j.cageo.2012.01.006
[4] Wang, G. W., Zhu, Y. Y., Zhang, S. T., Yan, C. H., Song, Y. W., Ma, Z. B., Hong, D. M., & Chen, T. Z. (2012). 3D Geological Modeling Based on Gravitational and Magnetic Data Inversion in the Luanchuan Ore Region, Henan Province, China. Journal of Applied Geophysics, 80, 1-11. http://dx.doi.org/10.1016/j.jappgeo.2012.01.006
[5] Hou, Z. Q., Yang, Y. Q., Wang, H. P. et al. (2003). Colli-sion-Orogenic and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Beijing: Geological Publishing House, 156-160. (in Chinese with English abstract)
[6] Ilya, P., & Ahmed, S. (2009). Gravity and Magnetic Data Inversion for 3D Topography of the Moho Discontinuity in the Northern Red Sea Area, Egypt. Journal of Geodynamics, 47, 237-245. http://dx.doi.org/10.1016/j.jog.2008.12.001
[7] Li, W. C., Yu, H. J., Yin, G. H., Cao, X. M., Huang, D. Z., & Dong, T. (2012). Re-Os Dating of Molybdenite from Tongchanggou Mo-Polymetallic Deposit in Northwest Yunnan and Its Metallogenic Environment. Mineral Deposits, 31, 282- 292. (in Chinese with English abstract)
[8] Maysam, A., Ali, G., Gholam-Hossain, N., & Nader, F. (2013). Fast Inversion of Magnetic Data Using Lanczosbidiagonalization Method. Journal of Applied Geophysics, 90, 126-137. http://dx.doi.org/10.1016/j.jappgeo.2013.01.008
[9] Pejman, S., Michel, C., & Denis, M. (2011). 3D Stochastic Inversion of MAGNETIC Data. Journal of Applied Geophysics, 73, 336-347. http://dx.doi.org/10.1016/j.jappgeo.2011.02.005
[10] Peng, H. J., Mao, J. W., Pei, R. F., Zhang, C. Q., Tian, G., Zhou, Y. M., Li, J. X., & Hou, L. (2014). Geochronology of the Hongniu-Hongshan Porphyry and Skarn Cu Deposit, Northwestern Yunnan Province, China: Implications for Mineralization of the Zhongdian Arc. Journal of Asian Earth Sciences, 79, 682-695. http://dx.doi.org/10.1016/j.jseaes.2013.07.008
[11] Stocco, S., Godio, A., & Sambuelli, L. (2009). Modelling and Compact Inversion of Magnetic Data: A Matlab Code. Computers & Geosciences, 35, 2111-2118. http://dx.doi.org/10.1016/j.cageo.2009.04.002
[12] Vanessa, B. R., Vinicius, H. A. L., & Marta, S. M. M. (2013). 3D In-version of Magnetic Data of Grouped Anomalies— Study Applied to S?o José Intrusions in MatoGrosso, Brazil. Journal of Applied Geophysics, 93, 67-76. http://dx.doi.org/10.1016/j.jappgeo.2013.03.013
[13] Yang, Y. S., Li, Y. Y., Liu, T. Y., Zhan, Y. L., & Feng, J. (2011). Interactive 3D forward Modeling of Total Field Surface and Three-Component Borehole Magnetic Data for the Daye Iron-Ore Deposit (Central China). Journal of Applied Geophysics, 75, 254-263. http://dx.doi.org/10.1016/j.jappgeo.2011.07.010
[14] Alanna, C. D., & Yára, R. M. (2009). Gravity and Magnetic 3D Inversion of Morro do Engenho Complex, Central Brazil. Journal of South American Earth Sciences, 28, 193-203. http://dx.doi.org/10.1016/j.jsames.2009.02.006
[15] Eun-Jung, H., Shih, C., Peter, K., Michael, D., Barry, B., & Matthew, H. (2011). Automatic Identification of Responses from Porphyry Intrusive Systems within Magnetic Data Using Image Analysis. Journal of Applied Geophysics, 74, 255-262. http://dx.doi.org/10.1016/j.jappgeo.2011.06.016
[16] Fabio, C. T. (2012). Rapid Interactive Modeling of 3D Magnetic Anomalies. Computers & Geosciences, 48, 308-315. http://dx.doi.org/10.1016/j.cageo.2012.01.006
[17] Wang, G. W., Zhu, Y. Y., Zhang, S. T., Yan, C. H., Song, Y. W., Ma, Z. B., Hong, D. M., & Chen, T. Z. (2012). 3D Geological Modeling Based on Gravitational and Magnetic Data Inversion in the Luanchuan Ore Region, Henan Province, China. Journal of Applied Geophysics, 80, 1-11. http://dx.doi.org/10.1016/j.jappgeo.2012.01.006
[18] Hou, Z. Q., Yang, Y. Q., Wang, H. P. et al. (2003). Colli-sion-Orogenic and Mineralization Systems of the Yidun Arc Orogen in Sanjiang Region, China. Beijing: Geological Publishing House, 156-160. (in Chinese with English abstract)
[19] Ilya, P., & Ahmed, S. (2009). Gravity and Magnetic Data Inversion for 3D Topography of the Moho Discontinuity in the Northern Red Sea Area, Egypt. Journal of Geodynamics, 47, 237-245. http://dx.doi.org/10.1016/j.jog.2008.12.001
[20] Li, W. C., Yu, H. J., Yin, G. H., Cao, X. M., Huang, D. Z., & Dong, T. (2012). Re-Os Dating of Molybdenite from Tongchanggou Mo-Polymetallic Deposit in Northwest Yunnan and Its Metallogenic Environment. Mineral Deposits, 31, 282- 292. (in Chinese with English abstract)
[21] Maysam, A., Ali, G., Gholam-Hossain, N., & Nader, F. (2013). Fast Inversion of Magnetic Data Using Lanczosbidiagonalization Method. Journal of Applied Geophysics, 90, 126-137. http://dx.doi.org/10.1016/j.jappgeo.2013.01.008
[22] Pejman, S., Michel, C., & Denis, M. (2011). 3D Stochastic Inversion of MAGNETIC Data. Journal of Applied Geophysics, 73, 336-347. http://dx.doi.org/10.1016/j.jappgeo.2011.02.005
[23] Peng, H. J., Mao, J. W., Pei, R. F., Zhang, C. Q., Tian, G., Zhou, Y. M., Li, J. X., & Hou, L. (2014). Geochronology of the Hongniu-Hongshan Porphyry and Skarn Cu Deposit, Northwestern Yunnan Province, China: Implications for Mineralization of the Zhongdian Arc. Journal of Asian Earth Sciences, 79, 682-695. http://dx.doi.org/10.1016/j.jseaes.2013.07.008
[24] Stocco, S., Godio, A., & Sambuelli, L. (2009). Modelling and Compact Inversion of Magnetic Data: A Matlab Code. Computers & Geosciences, 35, 2111-2118. http://dx.doi.org/10.1016/j.cageo.2009.04.002
[25] Vanessa, B. R., Vinicius, H. A. L., & Marta, S. M. M. (2013). 3D In-version of Magnetic Data of Grouped Anomalies— Study Applied to S?o José Intrusions in MatoGrosso, Brazil. Journal of Applied Geophysics, 93, 67-76. http://dx.doi.org/10.1016/j.jappgeo.2013.03.013
[26] Yang, Y. S., Li, Y. Y., Liu, T. Y., Zhan, Y. L., & Feng, J. (2011). Interactive 3D forward Modeling of Total Field Surface and Three-Component Borehole Magnetic Data for the Daye Iron-Ore Deposit (Central China). Journal of Applied Geophysics, 75, 254-263. http://dx.doi.org/10.1016/j.jappgeo.2011.07.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.