Environmental Sounds Enhance Cortical Responses Related to a Serial Arithmetic Task


In this study, we used near-infrared spectroscopy (NIRS) to examine the effects of environmental sounds on performance of a serial arithmetic task. Subjects included 6 males and 15 females aged 21 or 22 years. All subjects were required to perform a serial arithmetic task according to the Uchida-Kraepelin performance test. We used four environmental conditions: hubbub sound, forest sound, traffic noise, and a silent control condition. During the serial arithmetic task, we also measured hemodynamic changes in the frontal cortex using NIRS to assess the effects of environmental sounds on brain function during the serial arithmetic task. Results showed that exposure to environmental sounds did not enhance or detract from task performance speed in a serial arithmetic task performance when compared with results obtained upon exposure to silence. However, environmental sounds enhanced cortical responses during the serial arithmetic task. Our results reveal differences in activation of the prefrontal cortex under different sound conditions, which may help increase our understanding of the potential effects of environmental sounds.

Share and Cite:

Fujimaki, K. , Takemoto, H. & Morinobu, S. (2014). Environmental Sounds Enhance Cortical Responses Related to a Serial Arithmetic Task. Psychology, 5, 828-839. doi: 10.4236/psych.2014.58094.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Abd Hamid, A. I., Yusoff, A. N., Mukari, S. Z., & Mohamad, M. (2011). Brain Activation during Addition and Subtraction Tasks In-Noise and In-Quiet. Malaysian Journal of Medical Sciences, 18, 3-15.
[2] Annerstedt, M., Jonsson, P., Wallergard, M., Johansson, G., Karlson, B., Grahn, P., Hansen, A. M., & Wahrborg, P. (2013). Inducing Physiological Stress Recovery with Sounds of Nature in a Virtual Reality Forest—Results from a Pilot Study. Physiology & Behavior, 118, 240-250.
[3] Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2 = 4? Meta-Analyses of Brain Areas Needed for Numbers and Calculations. Neuroimage, 54, 2382-2393.
[4] Babisch, W. (2005). Noise and Health. Environmental Health Perspectives, 113, A14-15.
[5] Babisch, W., Beule, B., Schust, M., Kersten, N., & Ising, H. (2005). Traffic Noise and Risk of Myocardial Infarction. Epidemiology, 16, 33-40.
[6] Banbury, S. (1998). Disruption of Office-Related Tasks by Speech and Office Noise. British Journal of Psychology, 89, 499-517.
[7] Bergman, L. R., & Magnusson, D. (1997). A Person-Oriented Approach in Research on Developmental Psychopathology. Development and Psychopathology, 9, 291-319.
[8] Blood, A. J., & Zatorre, R. J. (2001). Intensely Pleasurable Responses to Music Correlate with Activity in Brain Regions Implicated in Reward and Emotion. Proceedings of the National Academy of Sciences of the United States of America, 98, 11818-11823.
[9] Bluhm, G., Nordling, E., & Berglind, N. (2004). Road Traffic Noise and Annoyance—An Increasing Environmental Health Problem. Noise Health, 6, 43-49.
[10] Boly, M., Faymonville, M. E., Peigneux, P., Lambermont, B., Damas, P., Del Fiore, G., Degueldre, C., Franck, G., Luxen, A., Lamy, M., Moonen, G., Maquet, P., & Laureys, S. (2004). Auditory Processing in Severely Brain Injured Patients: Differences between the Minimally Conscious State and the Persistent Vegetative State. Archives of Neurology, 61, 233-238.
[11] Cassidy, G., & MacDonald, R. (2007). The Effect of Background Music and Background Noise on the Task Performance of Introverts and Extraverts. Psychology of Music, 35, 517-537.
[12] Chang, L., Tomasi, D., Yakupov, R., Lozar, C., Arnold, S., Caparelli, E., & Ernst, T. (2004). Adaptation of the Attention Network in Human Immunodeficiency Virus Brain Injury. Annals of Neurology, 56, 259-272.
[13] Chiles, W. D., Jennings, A. E., & Alluisi, E. A. (1979). Measurement and Scaling of Workload in Complex Performance. Aviation, Space, and Environmental Medicine, 50, 376-381.
[14] Chiovenda, P., Pasqualetti, P., Zappasodi, F., Ercolani, M., Milazzo, D., Tomei, G., Capozzella, A., Tomei, F., Rossini, P. M., & Tecchio, F. (2007). Environmental Noise-Exposed Workers: Event-Related Potentials, Neuropsychological and Mood Assessment. International Journal of Psychophysiology, 65, 228-237.
[15] Cui, X., Bray, S., & Reiss, A. L. (2010). Functional near Infrared Spectroscopy (NIRS) Signal Improvement Based on Negative Correlation between Oxygenated and Deoxygenated Hemoglobin Dynamics. Neuroimage, 49, 3039-3046.
[16] Dehaene, S. (1992). Varieties of Numerical Abilities. Cognition, 44, 1-42.
[17] Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three Parietal Circuits for Number Processing. Cognitive Neuropsychology, 20, 487-506.
[18] Engelien, A., Huber, W., Silbersweig, D., Stern, E., Frith, C. D., Doring, W., Thron, A., & Frackowiak, R. S. (2000). The Neural Correlates of “Deaf-Hearing” in Man: Conscious Sensory Awareness Enabled by Attentional Modulation. Brain, 123, 532-545.
[19] Falk, T., Paton, K., Power, S., & Chau, T. (2010). Improving the Performance of NIRS-Based Brain-Computer Interfaces in the Presence of Background Auditory Distractions. International Conference on Acoustics, Speech, and Signal Processing, 14-19 March 2010, Dallas, 517-520.
[20] Flaten, M. A., Nordmark, E., & Elden, A. (2005). Effects of Background Noise on the Human Startle Reflex and Prepulse Inhibition. Psychophysiology, 42, 298-305.
[21] Fuchino, Y., Sato, H., Maki, A., Yamamoto, Y., Katura, T., Obata, A., Koizumi, H., & Yoro, T. (2006). Effect of fMRI Acoustic Noise on Sensorimotor Activation Examined Using Optical Topography. NeuroImage, 32, 771-777.
[22] Furnham, A., & Strbac, L. (2002). Music Is as Distracting as Noise: The Differential Distraction of Background Music and Noise on the Cognitive Test Performance of Introverts and Extraverts. Ergonomics, 45, 203-217.
[23] Gidlof-Gunnarsson, A., & Ohrstrom, E. (2010). Attractive “Quiet” Courtyards: A Potential Modifier of Urban Residents’ Responses to Road Traffic Noise? International Journal of Environmental Research and Public Health, 7, 3359-3375.
[24] Gumenyuk, V., Korzyukov, O., Alho, K., Escera, C., & Naatanen, R. (2004). Effects of Auditory Distraction on Electrophysiological Brain Activity and Performance in Children Aged 8 - 13 Years. Psychophysiology, 41, 30-36.
[25] Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of Near-Infrared Spectroscopy Signals: A Study with a Newly Developed Perfused Rat Brain Model. Journal of Applied Physiology, 90, 1657-1662.
[26] Howard, C. S., Munro, K. J., & Plack, C. J. (2010). Listening Effort at Signal-to-Noise Ratios that Are Typical of the School Classroom. International Journal of Audiology, 49, 928-932.
[27] Ischebeck, A., Zamarian, L., Schocke, M., & Delazer, M. (2009). Flexible Transfer of Knowledge in Mental Arithmetic—An fMRI Study. NeuroImage, 44, 1103-1112.
[28] Jarup, L., Dudley, M. L., Babisch, W., Houthuijs, D., Swart, W., Pershagen, G., Bluhm, G., Katsouyanni, K., Velonakis, M., Cadum, E., Vigna-Taglianti, F., & Consortium, H. (2005). Hypertension and Exposure to Noise near Airports (HYENA): Study Design and Noise Exposure Assessment. Environmental Health Perspectives, 113, 1473-1478.
[29] Jueptner, M., & Weiller, C. (1995). Review: Does Measurement of Regional Cerebral Blood Flow Reflect Synaptic Activity? Implications for PET and fMRI. NeuroImage, 2, 148-156.
[30] Jueptner, M., Stephan, K. M., Frith, C. D., Brooks, D. J., Frackowiak, R. S., & Passingham, R. E. (1997). Anatomy of Motor Learning. I. Frontal Cortex and Attention to Action. Journal of Neurophysiology, 77, 1313-1324.
[31] Kato, T., Murashita, J., Shioiri, T., Inubushi, T., & Kato, N. (1999). Relationship of Energy Metabolism Detected by 31P-MRS in the Human Brain with Mental Fatigue. Neuropsychobiology, 39, 214-218.
[32] Kujala, T., Shtyrov, Y., Winkler, I., Saher, M., Tervaniemi, M., Sallinen, M., Teder-Salejarvi, W., Alho, K., Reinikainen, K., & Naatanen, R. (2004). Long-Term Exposure to Noise Impairs Cortical Sound Processing and Attention Control. Psychophysiology, 41, 875-881.
[33] Kurahashi, S., Kato, M., & Tsujioka, B. (1957). Development of the Uchida-Kraepelin Psychodiagnostic Test in Japan. Psychologia (Kyoto), 1, 104-109.
[34] LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic Overlap of Working Memory and Spatial Attention Networks: A Functional MRI Comparison within Subjects. NeuroImage, 10, 695-704.
[35] Li, G. Y., Ueki, H., Kawashima, T., Sugataka, K., Muraoka, T., & Yamada, S. (2004). Involvement of the Noradrenergic System in Performance on a Continuous Task Requiring Effortful Attention. Neuropsychobiology, 50, 336-340.
[36] Lundquist, P., Holmberg, K., & Landstrom, U. (2000). Annoyance and Effects on Work from Environmental Noise at School. Noise & Health, 2, 39-46.
[37] Lusk, S. L., Gillespie, B., Hagerty, B. M., & Ziemba, R. A. (2004). Acute Effects of Noise on Blood Pressure and Heart Rate. Archives of Environmental Health, 59, 392-399.
[38] Luu, S., & Chau, T. (2009). Decoding Subjective Preference from Single-Trial Near-Infrared Spectroscopy Signals. Journal of Neural Engineering, 6, Article ID: 016003.
[39] Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y., & Koizumi, H. (1995). Spatial and Temporal Analysis of Human Motor Activity Using Noninvasive NIR Topography. Medical Physics, 22, 1997-2005.
[40] Negoescu, R., Dinca-Panaitescu, S., Filcescu, V., Ionescu, D., & Wolf, S. (1997). Mental Stress Enhances the Sympathetic Fraction of QT Variability in an RR-Independent Way. Integrative Physiological and Behavioral Science, 32, 220-227.
[41] Okada, E., & Delpy, D. T. (2003). Near-Infrared Light Propagation in an Adult Head Model. II. Effect of Superficial Tissue Thickness on the Sensitivity of the Near-Infrared Spectroscopy Signal. Applied Optics, 42, 2915-2922.
[42] Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., Oda, I., Isobe, S., Suzuki, T., Kohyama, K., & Dan, I. (2004). Three-Dimensional Probabilistic Anatomical Cranio-Cerebral Correlation via the International 10-20 System Oriented for Transcranial Functional Brain Mapping. NeuroImage, 21, 99-111.
[43] Oldfield, R. C. (1971). The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113.
[44] Pawlaczyk-Luszczyniska, M., Dudarewicz, A., Waszkowska, M., Szymczak, W., & Sliwinska-Kowalska, M. (2005). The Impact of Low-Frequency Noise on Human Mental Performance. International Journal of Occupational Medicine and Environmental Health, 18, 185-198.
[45] Saadatmand, V., Rejeh, N., Heravi-Karimooi, M., Tadrisi, S. D., Zayeri, F., Vaismoradi, M., & Jasper, M. (2013). Effect of Nature-Based Sounds’ Intervention on Agitation, Anxiety, and Stress in Patients under Mechanical Ventilator Support: A Randomised Controlled Trial. International Journal of Nursing Studies, 50, 895-904.
[46] Salisbury, D. F., Desantis, M. A., Shenton, M. E., & McCarley, R. W. (2002). The Effect of Background Noise on P300 to Suprathreshold Stimuli. Psychophysiology, 39, 111-115.
[47] Sandrock, S., Schutte, M., & Griefahn, B. (2009). Impairing Effects of Noise in High and Low Noise Sensitive Persons Working on Different Mental Tasks. International Archives of Occupational and Environmental Health, 82, 779-785.
[48] Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., & Birbaumer, N. (2007). Temporal Classification of Multichannel Near-Infrared Spectroscopy Signals of Motor Imagery for Developing a Brain-Computer Interface. NeuroImage, 34, 1416-1427.
[49] Smith, A. P. (1991). Noise and Aspects of Attention. British Journal of Psychology, 82, 313-324.
[50] Stansfeld, S. A., Berglund, B., Clark, C., Lopez-Barrio, I., Fischer, P., Ohrstrom, E., Haines, M. M., Head, J., Hygge, S., van Kamp, I., Berry, B. F. on Behalf of the RANCH Study Team (2005). Aircraft and Road Traffic Noise and Children’s Cognition and Health: A Cross-National Study. Lancet, 365, 1942-1949.
[51] Strangman, G., Culver, J. P., Thompson, J. H., & Boas, D. A. (2002). A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation. NeuroImage, 17, 719-731.
[52] Sugimoto, K., Kanai, A., & Shoji, N. (2009). The Effectiveness of the Uchida-Kraepelin Test for Psychological Stress: An Analysis of Plasma and Salivary Stress Substances. BioPsychoSocial Medicine, 3, 5.
[53] Tomasi, D., Caparelli, E. C., Chang, L., & Ernst, T. (2005). fMRI-Acoustic Noise Alters Brain Activation during Working Memory Tasks. NeuroImage, 27, 377-386.
[54] Tomei, G., Tecchio, F., Zappasodi, F., Ercolani, M., Moffa, F., Chiovenda, P., & Ciarrocca, M. (2006). Exposure to Traffic Noise and Effects on Attention. Annali di Igiene, 18, 507-519.
[55] Tregellas, J. R., Smucny, J., Eichman, L., & Rojas, D. C. (2012). The Effect of Distracting Noise on the Neuronal Mechanisms of Attention in Schizophrenia. Schizophrenia Research, 142, 230-236.
[56] Trimmel, M., & Poelzl, G. (2006). Impact of Background Noise on Reaction Time and Brain DC Potential Changes of VDT-Based Spatial Attention. Ergonomics, 49, 202-208.
[57] van Harskamp, N. J., & Cipolotti, L. (2001). Selective Impairments for Addition, Subtraction and Multiplication. Implications for the Organisation of Arithmetical Facts. Cortex, 37, 363-388.
[58] Villringer, A., & Chance, B. (1997). Non-Invasive Optical Spectroscopy and Imaging of Human Brain Function. Trends in Neurosciences, 20, 435-442.
[59] Watanabe, A., Kato, N., & Kato, T. (2002). Effects of Creatine on Mental Fatigue and Cerebral Hemoglobin Oxygenation. Neuroscience Research, 42, 279-285.
[60] Waye, K. P., Bengtsson, J., Rylander, R., Hucklebridge, F., Evans, P., & Clow, A. (2002). Low Frequency Noise Enhances Cortisol among Noise Sensitive Subjects during Work Performance. Life Sciences, 70, 745-758.
[61] Weinstein, N. D. (1978). Individual Differences in Reactions to Noise: A Longitudinal Study in a College Dormitory. Journal of Applied Psychology, 63, 458-466.
[62] Westman, J. C., & Walters, J. R. (1981). Noise and Stress: A Comprehensive Approach. Environmental Health Perspectives, 41, 291-309.
[63] Wetherell, A. (1996). Performance Tests. Environmental Health Perspectives, 104, 247-273.
[64] Wu, S. S., Chang, T. T., Majid, A., Caspers, S., Eickhoff, S. B., & Menon, V. (2009). Functional Heterogeneity of Inferior Parietal Cortex during Mathematical Cognition Assessed with Cytoarchitectonic Probability Maps. Cerebral Cortex, 19, 2930-2945.
[65] Yamada, K. (1996). The Uchida-Kraepelin Psychodiagnostic Test Text. Tokyo: Psychotechnological Institute of Japan, Inc.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.