A Solution of Generalized Cosine Equation in Hilbert’s Fourth Problem

DOI: 10.4236/apm.2014.46031   PDF   HTML     2,502 Downloads   3,309 Views  


A solution of Hilbert’s fourth problem leads to the integral equation which can be called the generalized cosine equation. In the present paper, we propose an inversion formula for the solution of the generalized cosine equation using integral and stochastic geometry methods.

Share and Cite:

Aramyan, R. (2014) A Solution of Generalized Cosine Equation in Hilbert’s Fourth Problem. Advances in Pure Mathematics, 4, 234-241. doi: 10.4236/apm.2014.46031.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Hamel, G. (1903) Uber die Geometrien in denen die Geraden die KUrzesten sind. Mathematische Annalen, 57, 231-264.
[2] Pogorelov, A.V. (1979) Hilbert’s Fourth Problem. Wilson and Sons, Hoboken (Russian Original: Izdat. “Nauka”, Moscow).
[3] Busemann, H. (1976) Problem IV: Desarguesian Spaces in Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics, 28, 628 p.
[4] Schneider, R. (2006) Crofton Measures in Projective Finsler Spaces. In: Grinberg, E.L., Li, S., Zhang, G. and Zhou, J., Eds., Integral Geometry and Convexity, World Scientific, New Jersey, 67-98.
[5] Schneider, R. (2002) On Integral Geometry in Projective Finsler Spaces. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 37, 34-51.
[6] Ambartzumian, R.V. (1976) A Note on Pseudo-Metrics on the Plane. Zeitschrift fUr Wahrscheinlichkeitstheorie und Verwandte Gebiete, 37, 145-155.
[7] Alexander, R. (1978) Planes for Which the Lines Are the Shortest Paths between Points. Illinois Journal of Mathematics, 22, 177-190.
[8] Alvarez, P.J.C. (2003) Hilberts Fourth Problem in Two Dimensions I. In: Katok, S., Sossinsky, A. and Tabachnikov, S., Eds., Mass Selecta: Teaching and Learning Advanced Undergraduate Mathematics, American Mathematical Society, Providence, 165-183.
[9] Ambartzumian, R.V. (1990) Factorization Calculus and Geometric Probability. Cambridge University Press, Cambridge.
[10] Schneider, R. and Weil, W. (1983) Zonoids and Related Topics. Convexity and Its Applications. In: Gruber, P.M. and Wills, J.M., Eds., Convexity and Its Applications, Birkhauser, Basel, 296-317.
[11] Ambartzumian, R.V. (1987) Combinatorial Integral Geometry, Metric and Zonoids. Acta Applicandae Mathematicae, 9, 3-27.
[12] Schneider, R. (1967) Zu einem Problem von Shephard Uber die Projektionen konvexer Korper. Mathematische Zeitschrift, 191, 71-82.
[13] Ambartzumian, R.V. and Oganyan V.K. (1994) Finite Additive Functionals in the Space of Planes, I. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 29, 3-51.
[14] Aramyan, R.H. (1994) Measure Generation in the Space of Planes and Spherical Euler Functionals. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 29, 52-74.
[15] Aramyan, R.H. (2011) Reconstruction of Measures in the Space of Planes. Lobachevskii Journal of Mathematics, 32, 241-246.
[16] Aramyan, R.H. (1992) Recovering Rose of Directions from Flag Densities in R3. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 27, 22-35.
[17] Aramyan, R.H. (2009) Solution of One Integral Equation on the Sphere by Methods of Integral Geometry. Doklady Mathematics, 79, 325-328.
[18] Panina, G.Y. (1994) Flag densities in R3. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 29, 76-80.
[19] Aramyan, R.H. (2010) Measure of Planes Intersecting a Convex Body. Sutra: International Journal of Mathematical Science Education, 3, 1-7.
[20] Panina, G.Y. (1987) Convex Bodies and Translation Invariant Measures in R3. Izvestiya Akademii Nauk Armyanskoi SSR. Matematika, 24, 478-489.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.