Biogas Estimation as a Basis for the Implementation of an Intermunicipal Landfill: Michoacan, Mexico


Municipal solid waste (MSW) generated in the municipalities of Sahuayo, Jiquilpan and Venustiano Carranza in Michoacan, is deposited in open dumps becoming hot spots for health and the environment. The total population in the three municipalities is 130,497 habitants, with a per capita waste production estimated in 0.718 kg·hab-1·day-1 (34,203 t·yr-1). The aim of this study was to estimate the formation of biogas for power generation from the decomposition of waste. The model used was the mexican model of biogas (version 2.0), assuming a useful life of 21 years of the landfill at a cost of 0.19 USD per kWh, the average CFE rate for municipal public lighting. Four possible scenarios were evaluated: one optimal recovering 68% of the biogas (10,095 tonnes of methane in 20 years), having a savings concept in electricity of 8,015,252 USD; in the second case (optimistic intermediate), it is assumed that it obtains 61% of biogas (9046 tonnes of methane) with benefits in power generation for 7,159,679 USD; the third case (pessimistic intermediate) estimating 48% of biogas recovered, being captured 7118 tonnes of methane with profits of 5,633,846 USD into electrical energy, the latter case (pessimistic), assuming 40% of biogas recovered, transforming 4672 tonnes of methane resultant in an economic benefit of 3,697,324 USD for electricity generation. The results justify the investment of the landfill and it is a measure to mitigate climate change and disease prevention.

Share and Cite:

Vera-Romero, I. , Reyes, J. , Espíritu-Barragán, C. , Estrada-Jaramillo, M. , Ortiz-Soriano, A. and Medina-Orozco, L. (2014) Biogas Estimation as a Basis for the Implementation of an Intermunicipal Landfill: Michoacan, Mexico. Journal of Environmental Protection, 5, 577-582. doi: 10.4236/jep.2014.57059.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] U.S. EPA (2005) Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2020. U.S. EPA, Washington DC.
[2] Johari, A., Ahmed, S.I., Hashim, H., Alkali, H. and Ramli, M. (2012) Economic and Environmental Benefits of Landfill Gas from Municipal Solid Waste in Malaysia. Renewable and Sustainable Energy Reviews, 16, 2907-2912.
[3] Rawat, M. and Ramanathan, A.L. (2011) Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India. Journal of Environmental Protection, 2, 399-407.
[4] Kumar, S., Gaikwad, S.A., Shekdar, A.V., Kshirsagar, P.S. and Singh, R.N. (2004) Estimation Method for National Methane Emission from Solid Waste Landfill. Atmospheric Environment, 38, 3481-3487.
[5] Laurila, T., Tuovinen, J.-P, Lohila, A., Hatakka, J., Aurela, M., Thum, T., Pihlatie, M., Rinne, J. and Vesala, T. (2005) Measuring Methane Emissions from a Landfill Using a Cost-Effective Micrometeorological Method. Geophysical Research Letters, 32.
[6] Aguilar-Virgen, Q., Armijo-de Vega, C. and Taboada-Gonzalez, P. (2009) El potencial energetico de los residuos solidos municipales. Ingenieria Revista Academica, 13, 59-62.
[7] Ayomoh, M.K.O., Oke, S.A., Adedji, W.O. and Charles-Owaba, O.E. (2008) An Approach to Tackling the Environmental and Health Impacts of Municipal Solid Waste Disposal in Developing Countries. Journal of Environmental Management, 88, 108-114.
[8] Moy, P., Krishnan, N., Ulloa, P., Cohen, S. and Brandtl-Raul, P.W. (2008) Options for Management of Municipal Solid Waste in New York City: A Preliminary Comparison of Health Risks and Policy Implications. Journal of Environmental Management, 87, 73-79.
[9] Gillett, J.W. (1992) Issues in Risk Assessment of Compost from Municipal Solid Waste: Occupational Health and Safety, Public Health, and Environmental Concerns. Biogas and Bioenergy, 3, 145-162.
[10] Karak, T., Bhattacharyya, P. and Das, T. (2013) Non-Segregated Municipal Solid Waste in an Open Dumping Ground: A Potential Contaminant in Relation to Environmental Health. International Journal of Environmental Science and Technology, 10, 503-518.
[11] Jaramillo, J. (1991) Guia para el diseno, construccion y operacion de rellenos sanitarios manuales. Washington DC.
[12] Bove, R. and Lunghi, P. (2006) Electric Power Generation from Landfill Gas Using Traditional and Innovative Technologies. Energy Conversion and Management, 47, 1391-1401.
[13] Murphy, J.D. and McKeogh, E. (2004) Technical, Economic and Environmental Analysis of Energy Production from Municipal Solid Waste. Renewable Energy, 29, 1043-1057.
[14] Murphy, J.D., McKeogh, E. and Kiely, G. (2004) Technical/Economic/Environmental Analysis of Biogas Utilisation. Applied Energy, 77, 407-427.
[15] Temelis, N. J. and Ulloa, P.A. (2007) Methane Generation in Landfills. Renewable Energy, 32, 1243-1257.
[16] Camargo, Y. and Velez, A. (2009) Emisiones de biogas producidas en rellenos sanitarios. II Simposio Iberoamericano de Ingenieria de Residuos, Barranquilla, 24-25.
[17] Batjes, N.H. and Bridges, E.M. (1992) World Inventory of Soil Emissions. International Soil Reference and Information Centre, 11-35.
[18] Stege, G.A. and Davila, J.L. (2009) Manual del Usuario Modelo Mexicano de Biogas Version 2.0. Washington DC.
[19] Aguilar-Virgen, Q., Armijo-de Vega, C. and Taboada-Gonzalez, P. (2011) Modelo mexicano para la estimacion de la generacion de biogas. Ingenieria Revista Academica, 15, 37-45.
[20] INEGI, Mexico en cifras. (2012).
[21] Flores, R., Munoz-Ledo, R., Flores, B.B. and Cano, K.I. (2008) Estimacion de la generacion de energia a partir de biomasa para proyectos del programa de mecanismo de desarrollo limpio. Revista Mexicana de Ingenieria Quimica, 7, 35-39.
[22] Chong, T.L., Matsufuji, Y. and Hassan, M.N. (2005) Implementation of the Semi-Aerobic Landfill System (Fukuoka Method) in Developing Countries: A Malaysia Cost Analysis. Waste Management, 25, 702-711.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.