Adsorptive Stripping Voltammetric Determination of Mangiferin Using an Activated Chitosan Modified Carbon Paste Electrode


A medium molecular weight powdered chitosan modified carbon paste electrode was used to investigate the electrochemical behaviour by cyclic voltammetry of the pharmacologically-active ingredient mangiferin (MG). An irreversible system was observed, with a peak at ﹢0.55 V (vs Ag/AgCl). The peak current increases about fourfold, at the modified electrode in comparison with that recorded at the chitosan free carbon paste electrode. This allowed the use of adsorptive stripping voltammetry to develop a simple and sensitive electroanalytical method for the determination of MG. The influence of key parameters was investigated, including the electrolysis potential, the preconcentration time, the pH of supporting electrolyte and MG concentration. Upon optimisation of these parameters, the electrode response was found to be directly proportional to the concentration of MG in the range from 2.06 × 10﹣6 M to 6.74 × 10﹣5 M, leading to a detection limit of 1.84 μM for 240 s preconcentration at ﹣0.1 V. A mechanism was also proposed for the electrochemical oxidation of MG.

Share and Cite:

Tchieno, F. , Njanja, E. , Tapondjou, L. and Tonle, I. (2014) Adsorptive Stripping Voltammetric Determination of Mangiferin Using an Activated Chitosan Modified Carbon Paste Electrode. American Journal of Analytical Chemistry, 5, 424-432. doi: 10.4236/ajac.2014.57051.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Freitas, P.G., Barbosa. A.F., Saraiva, L.A., Camps, I., Da Silveira, N.J.F., Veloso, M.P., Santos, M.H. and Schneedorf, J.M. (2012) Mangiferin Binding to Serum Albumin Is Non-Saturable and Induces Conformational Changes at High Concentrations. Journal of Luminescence, 132, 3027-3034.
[2] Hiroyuki, K. (2010) Recent Developments and Applications of Microextraction Techniques in Drug Analysis. Analytical and Bioanalytical Chemistry, 396, 339-364.
[3] Geodakyan, S.V., Voskoboinikova, I.V., Tjukavkina, N.A., Kolhir, V.K., Kolesnik, Y.A., Zjuzin, V.A., Glyzin, V.I. and Sokolov, S.J. (2006) Experimental Pharmacokinetics of Biologically Active Plant Phenolic Compounds. I. Pharmacokinetics of Mangiferin in the Rat. Phytotherapy Research, 6, 332-334.
[4] Luo, F., Lv, Q., Zhao, Y., Hu, G., Huang, G., Zhang, J., Sun, C., Li, X. and Chen, K. (2012) Quantification and Purification of Mangiferin from Chinese Mango (Mangifera indica L.) Cultivars and Its Protective Effect on Human Umbilical Vein Endothelial Cells under H2O2-Induced Stress. International Journal of Molecular Sciences, 13, 11260-11274.
[5] Wauthoz, N., Balde, A., Balde, E.S., Van Damme, M. and Duez, P. (2007) Ethnopharmacology of Mangifera indica L. Bark and Pharmacological Studies of Its Main C-Glucosylxanthone, Mangiferin. International Journal of Biomedical and Pharmaceutical Sciences, 1, 112-119.
[6] Singh, K.S., Sharma, V.K., Kumar, Y., Kumar, S.S. and Sinha, S.K. (2009) Phytochemical and Pharmacological Investigations on Mangiferin. Herba Polonica, 55, 126-139.
[7] Pardo-Andreu, G.I., Delgado, R., Nunez-Selles, A.J. and Vercesi, A.F. (2006) Mangifera indica L. Extract (Vimang®) Inhibits 2-Deoxyribose Damage Induced by Fe(III) plus Ascorbate. Phytotherapy Research, 20, 120-124.
[8] Aderigbe, A.O., Emudianughe, T.S. and Lowal, B.A. (2001) Evaluation of the Antidiabetic Action of Mangifera indica in Mice. Phytotherapy Research, 15, 456-458.
[9] Mancini, D.A.P., Torres, R.P., Pinto, J.R. and Mancini-Filho, J. (2009) Inhibition of DNA Virus: Herpes-1 (HSV-1) in Cellular Culture Replication, through an Antioxidant Treatment Extracted from Rosemary Spice. Journal of Pharmaceutical Sciences, 45, 127-131.
[10] Guha, S., Ghosal, S. and Chattopadyay, U. (1996) Antitumor, Immunomodulatory and Anti-HIV Effect of Mangiferin, a Naturally Occurring Glucosylxanthone. Chemotherapy, 42, 443-451.
[11] Ghosal, S. and Chaudary, R.K. (1971) Xanthones of Canscora decussata Schult. Phytochemistry, 10, 2425-2432.
[12] Rojas-Hernandez, A., Gomez-Zaleta, B., Ramirez-Silva, M.T., Gutierrez, A., Gonzalez-Vergara, E. and Guizado-Rodriguez, M. (2006) UV/Vis, 1H, and 13C NMR Spectroscopic Studies to Determine Mangiferin pK(a) Values. Spectrochimica Acta A, 64, 1002-1009.
[13] Frahm, A.W. and Chaudhuri, R.K. (1979) 13C NMR Spectroscopy of Substituted Xanthones-II: 13C NMR Spectral Study of Polyhydroxy Xanthones. Tetrahedron, 35, 2035-2038.
[14] Bhatia, V.K., Ramanathan, J.D. and Seshadri, T.R. (1967) Constitution of Mangiferin. Tetrahedron, 23, 1363-1368.
[15] Saleh, N.A.M. and El Ansari, M.A.I. (1975) Polyphenolics of Twenty Local Varieties of Mangifera indica. Planta Medica, 28, 124-130.
[16] Tanaka, T., Sueyasu, T., Nonaka, G. and Nishioka, I. (1984) Tannins and Related Compounds. Isolation and Characterization of Galloyl and p-Hydroxybenzoyl Ester of Benzophenone and Xanthone C-Glucosides from Mangifera indica. Chemical and Pharmaceutical Bulletin, 32, 2676-2686.
[17] El Ansari, M.A., Rajadurai, S. and Nayudamma, Y. (1967) Studies on the Polyphenols of Mangifera indica Bark. Leather Science, 14, 247-251.
[18] Schrieber, A., Berardini, S. and Carle, R. (2003) Identification of Flavonol and Xanthone Glycosides from Mango (Mangifera indica L. cv. “Tommy Atkins”) Peels by High-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. Journal of Agricultural and Food Chemistry, 51, 5006-5011.
[19] Schrieber, A., Ullrich, W. and Carle, R. (2000) Characterization of Polyphenols in Mango Puree Concentrate by HPLC with Diode Array and Mass Spectrometric Detection. Innovative Food Science and Emerging Technologies, 1, 161-166.
[20] Saint-Marcoux, F., Sauvage, F.L. and Marquet, P. (2007) Current Role of LC-MS in Therapeutic Drug Monitoring. Analytical and Bioanalytical Chemistry, 388, 1327-1349.
[21] Wagheu, K.J., Forano, C., Besse-Hoggan, P., Tonle, I.K., Ngameni, E. and Mousty, C. (2013) Electrochemical Determination of Mesotrione at Organoclay Modified Glassy Carbon Electrodes. Talanta, 103, 337-343.
[22] Kenne-Dedzo, G. and Detellier, C. (2013) Ionic Liquid-Kaolinite Nanohybrid Materials for the Amperometric Detection of Trace Levels of Iodide. Analyst, 138, 767-770.
[23] Svancara, I., Walcarius, A., Kalcher, K. and Vytras, K. (2009) Carbon Paste Electrodes in the New Millennium. Central European Journal of Chemistry, 7, 598-656.
[24] Nie, L.B., Gu, H.S., He, Q.G., Chen, J.R. and Miao, Y.Q. (2007) Enhanced Electrochemical Detection of DNA Hybridization with Carbon Nanotube Modified Paste Electrode. Journal of Nanoscience and Nanotechnology, 7, 560-564.
[25] Luque, G.L., Ferreyra, N.F. and Rivas, A.G. (2006) Glucose Biosensor Based on the Use of a Carbon Nanotube Paste Electrode Modified with Metallic Particles. Microchimica Acta, 152, 277-283.
[26] Shahrokhian, S., Kamalzadeh, Z., Bezaatpour, A. and Boghaei, M. (2008) Differential Pulse Voltammetric Determination of N-Acetylcysteine by the Electrocatalytic Oxidation at the Surface of Carbon Nanotube-Paste Electrode Modified with Cobalt Salophen Complexes. Sensors and Actuators B: Chemical, 133, 599-606.
[27] Lin, X.Q., He, J.B. and Zha, Z.G. (2006) Simultaneous Determination of Quercetin and Rutin at a Multi-Wall Carbon Nanotube Paste Electrodes by Reversing Differential Pulse Voltammetry. Sensors and Actuators B: Chemical, 119, 608-614.
[28] Ly, S.Y., Lee, C.H. and Jung, Y.S. (2007) Measuring Oxytetracycline Using a Simple Prepared DNA Immobilized on a Carbon Nanotube Paste Electrode in Fish Tissue. Journal of the Korean Chemical Society, 51, 412-417.
[29] Zheng, L. and Song, F.G. (2007) Voltammetric Behaviour of Urapidil and Its Determination at Multi-Wall Carbon Nanotube Paste Electrode. Talanta, 73, 943-947.
[30] Abbaspour, A. and Mirzajani, R. (2007) Electrochemical Monitoring of Piroxicam in Different Pharmaceutical Forms with Multi-Walled Carbon Nanotubes Paste Electrode. Journal of Pharmaceutical and Biomedical Analysis, 44, 41-48.
[31] Shahrokhian, S. and Amiri, M. (2007) Multi-Walled Carbon Nanotube Paste Electrode for Selective Voltammetric Detection of Isoniazid. Microchimica Acta, 157, 149-158.
[32] Rivas, A.G., Rubianes, M.D., Pedano, N.F., Ferreyra, N.F., Luque, G.L., Rodriguez, M.C. and Miscoria, S.A. (2007) Carbon Nanotubes Paste Electrodes. A New Alternative for the Development of Electrochemical Sensors. Electroanalysis, 19, 823-831.
[33] Zou, X., Luo, L., Ding, Y. and Wu, O. (2007) Chitosan Incorporating Cetyltrimethylammonium Bromide Modified Glassy Carbon Electrode for Simultaneous Determination of Ascorbic Acid and Dopamine. Electroanalysis, 19, 1840-1844.
[34] Taleat, Z., Ardakani, M.M., Naeimi, H., Beitollahi, H., Nejati, M. and Zare, H.R. (2008) Electrochemical Behavior of Ascorbic Acid at a 2,2’-[3,6-Dioxa-1,8-octanediylbis(nitriloethylidyne)]-bis-Hydroquinone Carbon Paste Electrode. Analytical Sciences, 24, 1039-1044.
[35] Dobes, J., Zitka, O., Sochor, J., Ruttkay-Nedecky, B., Babula, P., Beklova, M., Kynicky, J., Hubalek, J., Klejdus, B., Kizek, R. and Adam, V. (2013) Electrochemical Tools for Determination of Phenolic Compounds in Plants. A Review. International Journal of Electrochemical Science, 8, 4520-4542.
[36] Yu, C., Gou, L., Zhou, X., Bao, N. and Gu, H. (2011) Chitosan-Fe3O4 Nanocomposite Based Electrochemical Sensors for the Determination of Bisphenol A. Electrochimica Acta, 56, 9056-9063.
[37] Wang, S.F., Tan, Y.M., Zhao, D.M. and Liu, G.D. (2008) Amperometric Tyrosinase Biosensor Based on Fe3O4 Nanoparticles-Chitosan Nanocomposite. Biosensors and Bioelectronics, 23, 1781-1787.
[38] Chang, Y.C. and Chen, D.H. (2005) Preparation and Adsorption Properties of Monodisperse Chitosan-Bound Fe3O4 Magnetic Nanoparticles for Removal of Cu(II) Ions. Journal of Colloid and Interface Science, 283, 446-451.
[39] Tapondjou, A.L., Miyamoto, T. and Lacaille-Dubois, M.A. (2006) Glucuronide Triterpene Saponins from Bersama engleriana. Phytochemistry, 67, 2126-2132.
[40] Habib, I.H.I. (2001) Anodic Stripping Voltammetric Determination of Nitrite Using Carbon Paste Electrode Modified with Chitosan. American Journal of Analytical Chemistry, 2, 284-288.
[41] Brett, A.M.O. and Ghica, M.-E. (2003) Electrochemical Oxidation of Quercetin. Electroanalysis, 15, 1745-1750.
[42] Temerk, Y.M., Ibrahim, H.S.M. and Schuhmann, W. (2006) Cathodic Adsorptive Stripping Voltammetric Determination of the Antitumor Drug Rutin in Pharmaceuticals, Human Urine and Blood Serum. Microchimica Acta, 153, 7-13.
[43] Lopez, P. and Merkoci, A. (2009) Improvement of the Electrochemical Detection of Catechol by the Use of a Carbon Nanotube Based Biosensor. Analyst, 134, 60-64.
[44] Nematollahi, D. and Malakzadah, M. (2003) Electrochemical Oxidation of Quercetin in the Presence of Benzenesulfunic Acids. Journal of Electroanalytical Chemistry, 547, 191-195.
[45] Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G. and Saso, L. (2005) Evaluation of the Antioxidant Activity of Flavonoids by “Ferric Reducing Antioxidant Power” Assay and Cyclic Voltammetry. Biochimica et Biophysica Acta, 1721, 174-184.
[46] Gimenes, D.T., dos Santos, W.T.P., Tormin, T.F., Munoz, R.A.A. and Richter, E.M. (2010) Flow-Injection Amperometric Method for Indirect Determination of Dopamine in the Presence of a Large Excess of Ascorbic Acid. Electroanalysis, 22, 74-78.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.