Symbolic Computation and New Exact Travelling Solutions for the (2+1)-Dimensional Zoomeron Equation

DOI: 10.4236/ijmnta.2014.32004   PDF   HTML   XML   4,961 Downloads   6,045 Views   Citations

Abstract

In this paper, we present Yan’s sine-cosine method and Wazwaz’s sine-cosine method to solve the (2+1)-dimensional Zoomeron equation. New exact travelling wave solutions are explicitly obtained with the aid of symbolic computation. The study confirms the power of the two schemes.

Share and Cite:

Gao, H. (2014) Symbolic Computation and New Exact Travelling Solutions for the (2+1)-Dimensional Zoomeron Equation. International Journal of Modern Nonlinear Theory and Application, 3, 23-28. doi: 10.4236/ijmnta.2014.32004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511623998
[2] Hirota, R. (2004) The Direct Method in Soliton Theory. Cambridge University Press, New York.
http://dx.doi.org/10.1017/CBO9780511543043
[3] Parkes, E.J. and Duffy, B.R. (1996) An Automated tanh-Function Method for Finding Solitary Wave Solutions to Nonlinear Evolution Equations. Computer Physics Communications, 98, 288-300.
http://dx.doi.org/10.1016/0010-4655(96)00104-X
[4] Fan, E.G. (2000) Extended tanh-Function Method and Its Applications to Nonlinear Equations. Physics Letters A, 277, 212-218. http://dx.doi.org/10.1016/S0375-9601(00)00725-8
[5] Wang, M.L. (1995) Solitary Wave Solutions for Variant Boussinesq Equations. Physics Letters A, 199, 169-172.
http://dx.doi.org/10.1016/0375-9601(95)00092-H
[6] Wang, M.L., Zhou, Y.B. and Li, Z.B. (1996) Applications of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics. Physics Letters A, 216, 67-75.
http://dx.doi.org/10.1016/0375-9601(96)00283-6
[7] Liu, S.K., Fu, Z.T. and Liu, S.D. (2001) Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 289, 69-74. http://dx.doi.org/10.1016/S0375-9601(01)00580-1
[8] Fu, Z.T., Liu, S.K. and Liu, S.D. (2001) New Jacobi Elliptic Function Expansion and New Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 290, 72-76. http://dx.doi.org/10.1016/S0375-9601(01)00644-2
[9] Feng, Z.S. (2002) On Explicit Exact Solutions to the Compound Burgers-KdV Equation. Physics Letters A, 293, 57-66.
http://dx.doi.org/10.1016/S0375-9601(01)00825-8
[10] Feng, Z.S. (2002) Exact Solution to an Approximate Sine-Gordon Equation in (n+1)-Dimensional Space. Physics Letters A, 302, 64-76. http://dx.doi.org/10.1016/S0375-9601(02)01114-3
[11] He, J.H. and Wu, X.H. (2006) Exp-Function Method for Nonlinear Wave Equations. Chaos Solitons Fractals, 30, 700-708. http://dx.doi.org/10.1016/j.chaos.2006.03.020
[12] He, J.H. and Abdou, M.A. (2007) New Periodic Solutions for Nonlinear Evolutions Using Exp-Function Method. Chaos Solitons Fractals, 34, 1421-1429. http://dx.doi.org/10.1016/j.chaos.2006.05.072
[13] Gao, H. and Zhao, R.X. (2010) New Exact Solutions to the Generalized Burgers-Huxley Equation. Applied Mathematics and Computation, 217, 1598-1603. http://dx.doi.org/10.1016/j.amc.2009.07.020
[14] Wang, M.L., Li, X.Z. and Zhang, J.L. (2008) The (G’/G)-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423.
http://dx.doi.org/10.1016/j.physleta.2007.07.051
[15] Wang, M.L., Zhang, J.L. and Li, X.Z. (2008) Application of the (G’/G)-Expansion to Travelling Wave Solutions of the Broer-Kaup and the Approximate Long Water Wave Equations. Applied Mathematics and Computation, 206, 321-326.
http://dx.doi.org/10.1016/j.amc.2008.08.045
[16] Gao, H. and Zhao, R.X. (2009) New Application of the (G’/G)-Expansion Method to Higher-Order Nonliear Equations. Applied Mathematics and Computation, 215, 2781-2786.
http://dx.doi.org/10.1016/j.amc.2009.08.041
[17] Yan, C.T. (1996) A Simple Transformation for Nonlinear Waves. Physics Letters A, 224, 77-84.
http://dx.doi.org/10.1016/S0375-9601(96)00770-0
[18] Yan, Z.Y. and Zhang, H.Q. (1999) New Explicit and Exact Travelling Wave Solutions for a System of Variant Boussinesq Equations in Mathematical Physics. Physics Letters A, 252, 291-296.
http://dx.doi.org/10.1016/S0375-9601(98)00956-6
[19] Yan, Z.Y. and Zhang, H.Q. (2000) On a New Algorithm of Constructing Solitary Wave Solutions for Systems of Nonlinear Evolution Equations in Mathematical Physics. Applied Mathematics and Computation, 21, 382-388.
[20] Wazwaz, A.M. (2004) A Sine-Cosine Method for Handling Nonlinear Wave Equations. Mathematical and Computer Modelling, 40, 499-508. http://dx.doi.org/10.1016/j.mcm.2003.12.010
[21] Wazwaz, A.M. (2004) Distinct Variants of the KdV Equation with Compact and Noncompact Structures. Applied Mathematics and Computation, 150, 365-377. http://dx.doi.org/10.1016/S0096-3003(03)00238-8
[22] Wazwaz, A.M. (2004) Variants of the Generalized KdV Equation with Compact and Noncompact Structures. Computers & Mathematics with Applications, 47, 583-591. http://dx.doi.org/10.1016/S0898-1221(04)90047-8
[23] Wazwaz, A.M. (2006) Solitons and Periodic Solutions for the Fifth-Order KdV Equation. Applied Mathematics Letters, 19, 162-167. http://dx.doi.org/10.1016/j.aml.2005.07.014
[24] Tang, S., Xiao, Y. and Wang, Z. (2009) Travelling Wave Solutions for a Class of Nonlinear Fourth Order Variant of a Generalized Camassa-Holm Equation. Applied Mathematics Letters, 210, 39-47.
[25] Alquran, M. (2012) Solitons and Periodic Solutions to Nonlinear Partial Differential Equations by the Sine-Cosine Method. Applied Mathematics & Information Sciences, 6, 85-88.
[26] Alquran, M., Ali, M. and Al-Khaled, K. (2012) Solitary Wave Solutions to Shallow Water Waves Arising in Fluid Dynamics. Journal of Nonlinear Studies, 19, 555-562.
[27] Alquran, M. and Qawasmeh, A. (2013) Classifications of Solutions to Some Generalized Nonlinear Evolution Equations and Systems by the Sine-Cosine Method. Journal of Nonlinear Studies, 20, 263-272.
[28] Alquran, M. and Al-Khaled, K. (2011) The tanh and Sine-Cosine Methods for Higher Order Equation of Kortewe-de Vrie Type. Physica Scripta, 84, 25010-25013.
http://dx.doi.org/10.1088/0031-8949/84/02/025010
[29] Calogero, F. and Degasperis, A. (1976) Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform I. Nuovo Cimento B, 32, 201-242. http://dx.doi.org/10.1007/BF02727634
[30] Abazari, R. (2011) The Solitary Wave Solutions of Zoomeron Equation. Applied Mathematical Sciences, 5, 2943-2949.
[31] Alquran, M. and Al-Khaled, K. (2012) Mathematical Methods for a Reliable Treatment of the (2+1)-Dimensional Zoomeron Equation. Mathematical Sciences, 6, 1-12. http://dx.doi.org/10.1186/2251-7456-6-11

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.