[1]
|
Cascao, R., Rosário, H.S., Souto-Carneiro, M.M. and Fonseca, J.E. (2010) Neutrophils in Rheumatoid Arthritis: More than Simple Final Effectors. Autoimmunity Reviews, 9, 531-535. http://dx.doi.org/10.1016/j.autrev.2009.12.013
|
[2]
|
Cross, A., Edwards, S.W., Bucknall, R.C. and Moots, R.J. (2004) Secretion of Oncostatin M by Neutrophils in Rheumatoid Arthritis. Arthritis & Rheumatism, 50, 1430-1436. http://dx.doi.org/10.1002/art.20166
|
[3]
|
Wright, H.L., Chikura, B., Bucknall, R.C., Moots, R.J. and Edwards, S.W. (2011) Changes in Expression of Membrane TNF, NF-κB Activation and Neutrophil Apoptosis during Active and Resolved Inflammation. Annals of the Rheumatic Diseases, 70, 537-543. http://ard.bmj.com/content/early/2010/11/24/ard.2010.138065.abstract http://dx.doi.org/10.1136/ard.2010.138065
|
[4]
|
Wright, H.L., Moots, R.J., Bucknall, R.C. and Edwards, S.W. (2010) Neutrophil Function in Inflammation and Inflammatory Diseases. Rheumatology, 49, 1618-1631. http://rheumatology.oxfordjournals.org/content/49/9/1618.abstract http://dx.doi.org/10.1093/rheumatology/keq045
|
[5]
|
Milanova, V., Ivanovska, N. and Dimitrova, P. (2014) TLR2 Elicits IL-17-Mediated RANKL Expression, IL-17, and OPG Production in Neutrophils from Arthritic Mice. Mediators of Inflammation, 2014, 14. http://dx.doi.org/10.1155/2014/643406
|
[6]
|
Raza, K., Falciani, F., Curnow, S.J., Ross, E.J., Lee, C.Y., Akbar, A.N., Lord, J.M., Gordon, C., Buckley, C.D. and Salmon, M. (2005) Early Rheumatoid Arthritis Is Characterized by a Distinct and Transient Synovial Fluid Cytokine Profile of T Cell and Stromal Cell Origin. Arthritis Research & Therapy, 7, R784-R795. http://arthritis-research.com/content/7/4/R784 http://dx.doi.org/10.1186/ar1733
|
[7]
|
Poubelle, P.E., Chakravarti, A., Fernandes, M.J., Doiron, K. and Marceau, A.A. (2007) Differential Expression of RANK, RANK-L, and Osteoprotegerin by Synovial Fluid Neutrophils from Patients with Rheumatoid Arthritis and by Healthy Human Blood Neutrophils. Arthritis Research & Therapy, 9, R25. http://dx.doi.org/10.1186/ar2137
|
[8]
|
Boxio, R., Bossenmeyer-Pourie, C., Steinckwich, N., Dournon, C. and Nusse, O. (2004) Mouse Bone Marrow Contains Large Numbers of Functionally Competent Neutrophils. Journal of Leukocyte Biology, 75, 604-611. http://www.jleukbio.org/content/75/4/604.abstract http://dx.doi.org/10.1189/jlb.0703340
|
[9]
|
Dimitrova, P., Ivanovska, N., Belenska, L., Milanova, V., Schwaeble, W. and Stover, C. (2012) Abrogated RANKL Expression in Properdin-Deficient Mice Is Associated with Better Outcome from Collagen-Antibody-Induced Arthritis. Arthritis Research & Therapy, 14, R173. http://arthritis-research.com/content/14/4/R173 http://dx.doi.org/10.1186/ar3926
|
[10]
|
Takahashi, N., Udagawa, N., Kobayashi, Y. and Suda, T. (2007) Generation of Osteoclasts in Vitro, and Assay of Osteoclast Activity. Methods of Molecular Medicine, 135, 285-301. http://dx.doi.org/10.1007/978-1-59745-401-8_18
|
[11]
|
Dimitrova, P., Ivanovska, N., Schwaeble, W., Gyurkovska, V. and Stover, C. (2010) The Role of Properdin in Murine Zymosan-Induced Arthritis. Molecular Immunology, 47, 1458-1466. http://dx.doi.org/10.1016/j.molimm.2010.02.007
|
[12]
|
Ivanovska, N.D., Dimitrova, P.A., Luckett, J.C., El-Rachkidy Lonnen, R., Schwaeble, W.J. and Stover, C.M. (2008) Properdin Deficiency in Murine Models of Nonseptic Shock. Journal of Immunology, 180, 6962-6969. http://dx.doi.org/10.4049/jimmunol.180.10.6962
|
[13]
|
Aomatsu, K., Kato, T., Fujita, H., Hato, F., Oshitani, N., Kamata, N., Tamura, T., Arakawa, T. and Kitagawa, S. (2008) Toll-Like Receptor Agonists Stimulate Human Neutrophil Migration via Activation Of Mitogen-Activated Protein Kinases. Immunology, 123, 171-180. http://www.jimmunol.org/content/180/10/6962.abstract
|
[14]
|
Arnardottir, H., Freysdottir, J. and Hardardottir, I. (2012) Two Circulating Neutrophil Populations in Acute Inflammation in Mice. Inflammation Research, 61, 931-939. http://dx.doi.org/10.1007/s00011-012-0484-0
|
[15]
|
Cartwright, G.E., Athens, J.W. and Wintrobe, M.M. (1964) Analytical Review: The Kinetics of Granulopoiesis in Normal Man. Blood, 24, 780-803. http://bloodjournal.hematologylibrary.org/content/24/6/780.abstract
|
[16]
|
Summers, C., Rankin, S.M., Condliffe, A.M., Singh, N., Peters, A.M. and Chilvers, E.R. (2010) Neutrophil Kinetics in Health and Disease. Trends in Immunology, 31, 318-324. http://dx.doi.org/10.1016/j.it.2010.05.006
|
[17]
|
Cerutti, A., Puga, I. and Magri, G. (2013) The B Cell Helper Side of Neutrophils. Journal of Leukocyte Biology, 94, 677-682. http://www.jleukbio.org/content/94/4/677.abstract http://dx.doi.org/10.1189/jlb.1112596
|
[18]
|
Eash, K.J., Greenbaum, A.M., Gopalan, P.K. and Link, D.C. (2010) CXCR2 and CXCR4 Antagonistically Regulate Neutrophil Trafficking from Murine Bone Marrow. Journal of Clinical Investigation, 120, 2423-2431. http://dx.doi.org/10.1172/JCI41649
|
[19]
|
Moles, A., Murphy, L., Wilson, C.L., Chakraborty, J.B., Fox, C., Park, E.J., Mann, J., Oakley, F., Howarth, R., Brain, J., Masson, S., Karin, M., Seki, E. and Mann, D.A. (2014) A TLR2/S100A9/CXCL-2 Signaling Network Is Necessary for Neutrophil Recruitment in Acute and Chronic Liver Injury in the Mouse. Journal of Hepatology, 60, 782-791. http://dx.doi.org/10.1016/j.jhep.2013.12.005
|
[20]
|
Takada, Y. and Aggarwal, B.B. (2004) Evidence That Genetic Deletion of the TNF Receptor p60 or p80 in Macrophages Modulates RANKL-Induced Signaling. Blood, 104, 4113-4121. http://bloodjournal.hematologylibrary.org/content/104/13/4113.abstract http://dx.doi.org/10.1182/blood-2004-04-1607
|
[21]
|
Park, J.-S., Kwok, S.-K., Lim, M.-A., Oh, H.-J., Kim, E.-K., Jhun, J.-Y., Ju, J.H., Park, K.-S., Park, Y.-W., Park, S.-H., Kim, H.-Y., Cho, Y.-G. and Cho, M.-L. (2013) TWEAK Promotes Osteoclastogenesis in Rheumatoid Arthritis. American Journal of Pathology, 183, 857-867. http://dx.doi.org/10.1016/j.ajpath.2013.05.027
|
[22]
|
Wada, T., Nakashima, T., Hiroshi, N. and Penninger, J.M. (2005) RANKL-RANK Signaling in Osteoclastogenesis and Bone Disease. Trends in Molecular Medicine, 12, 17-25. http://dx.doi.org/10.1016/j.ajpath.2013.05.027
|
[23]
|
Piper, K., Boyde, A. and Jones, S.J. (1992) The Relationship between the Number of Nuclei of an Osteoclast and Its Resorptive Capability in Vitro. Anatomy and Embryology, 186, 291-299. http://dx.doi.org/10.1007/BF00185977
|
[24]
|
Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., Pignolo, R.J., Koczon-Jaremko, B., Lorenzo, J. and Choi, Y. (2006) v-ATPase V0 Subunit d2-Deficient Mice Exhibit Impaired Osteoclast Fusion and Increased Bone Formation. Nature Medicine, 12, 1403-1409. http://dx.doi.org/10.1038/nm1514
|
[25]
|
Humphrey, M.B., Ogasawara, K., Yao, W., Spusta, S.C., Daws, M.R., Lane, N.E., Lanier, L.L. and Nakamura, M.C. (2004) The Signaling Adapter Protein DAP12 Regulates Multinucleation during Osteoclast Development. Journal of Bone & Mineral Research, 19, 224-234. http://dx.doi.org/10.1359/JBMR.0301234
|
[26]
|
Haringman, J.J., Ludikhuize, J. and Tak, P.P. (2004) Chemokines in Joint Disease: The Key to Inflammation? Annals of the Rheumatic Diseases, 63, 1186-1194. http://ard.bmj.com/content/63/10/1186.abstract http://dx.doi.org/10.1136/ard.2004.020529
|
[27]
|
Bar-Shavit, Z. (2007) The Osteoclast: A Multinucleated, Hematopoietic-Origin, Bone-Resorbing Osteoimmune Cell. Journal of Cellular Biochemistry, 102, 1130-1139. http://dx.doi.org/10.1002/jcb.21553
|
[28]
|
Chakravarti, A., Raquil, M.A., Tessier, P. and Poubelle, P.E. (2009) Surface RANKL of Toll-Like Receptor 4-Stimulated Human Neutrophils Activates Osteoclastic Bone Resorption. Blood, 114, 1633-1644.
http://dx.doi.org/10.1182/blood-2008-09-178301
|