Spectroscopic, Kinetic Studies of Polyaniline-Flyash Composite


Polyaniline-fly ash (PANI-FA) composites were prepared by oxidative polymerization of aniline with fly ash in presence of ammonium persulphate (APS). The PANI-FA composites were prepared with different concentrations of fly ash to aniline ratio. The composites, so prepared, were characterized by UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The thermal stability was studied by TGA and total weight loss of PANI, FA and PANI-FA composites having FA composition of 0.02%, 0.1%, 0.5% and 1.0% were found to be 82%, 39.%, 67% 65%, 62% and 61%, respectively. The UV-vis spectroscopy of the PANI-FA polymeric composite shows absorption maxima at 315 and 350 nm (due to π-π* transition of the benzenoid rings), and 578-712 nm (due to charge transfer excitations of the quinoid structure), which are characteristic of emeraldine base. FTIR spectra of the PANI-FA composite is similar to that of pure polyaniline (PANI) but with the bands for C=N, C=C and C-N shifted to lower wave numbers, i.e., 1585, 1494, 1327 and 1113 cm?1 due to strong interaction of Fe2O3 and PANI matrix. SEM shows the complexation of metal oxide with emaraldine base of PANI, significantly changing the aggregate state of polymeric molecular chain.

Share and Cite:

R. Khan, P. Khare, B. Baruah, A. Hazarika and N. Dey, "Spectroscopic, Kinetic Studies of Polyaniline-Flyash Composite," Advances in Chemical Engineering and Science, Vol. 1 No. 2, 2011, pp. 37-44. doi: 10.4236/aces.2011.12007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. L. N Chandrakanthi and M. A. Careem, “Preparation and Characterization of CdS and Cu 2S Nanoparticle/Polyaniline Composite Films,” Thin Solid Films, Vol. 417, 2002, pp. 51-56. doi:10.1016/S0040-6090(02)00600-4
[2] J. E. Albuquerque, L. H. C. Mattoso, D. T. Balogh, R. M. Faria, J. G. Masters and A. G. MacDiarmid, “A Simple Method to Estimate the Oxidation State of Polyanilines,” Synthetic Metals, Vol. 113, 2000, pp. 19-22. doi:10.1016/S0379-6779(99)00299-4
[3] D. C. Schnitzler, M. S. Meruvia, I. A. H. Mmelgen and A. J. G. Zarbin, “Preparation and Characterization of Novel Hybrid Materials Formed from (Ti,Sn)O2 Nano-Particles and Polyaniline,” Chemistry of Materials, Vol. 15, No. 24, 2003, pp. 4658-4665. doi:10.1021/cm034292p
[4] F. Huguenin, G. M. Janete, E. A. Ticianelli and R. M. Torresi, “Structural and Electrochemical Properties of Nanocomposites Formed by V2O5 and Poly (3-Alkyl- pyrroles),” Journal Power Sources, Vol. 103, 2001, pp. 113-136. doi:10.1016/S0378-7753(01)00851-5
[5] V. A. Samoylov, Q. Hao, M. Y. Shirshov, C. Swart, E. Pringsheim, M. V. Mirsky and O. S. Wolfbeis, “Nanometer-Thick SPR Sensor for Gaseous HCl,” Sensors & Actuators, Vol. 106, 2005, pp. 369-372. doi:10.1016/j.snb.2004.08.029
[6] M. Ando, C. Swart, E. Pringsheim, M. V. Mirsky and O. S. Wolfbeis, “Optical Ozone-Sensing Properties of Poly (2-Chloroaniline), Poly (N-Methylaniline) and Polyaniline Films,” Sensors & Actuators B, Vol. 108, 2005, pp. 528-534. doi:10.1016/j.snb.2004.12.083
[7] W. Schultze and H. Karabalut, “Electrochemical Copolymerization of M-Toluidine and O-Phenylenediamin,” Electrochimica Acta, Vol. 50, 2005, pp. 1739-1745. doi:10.1016/j.electacta.2004.10.023
[8] H. Bai and G. Shi, “Gas Sensors Based on Conducting Polymers,” Sensor, Vol. 2, 2007, pp. 267-307. doi:10.3390/s7030267
[9] B. D. Malhotra, A. Chaubey and S. P. Singh, “Prospects of Conducting Polymers in Biosensors,” Analytica Chimica Acta, Vol. 578, 2006, pp. 59-74.
[10] D. C. Trivedi, “Handbook of Organic Conductive Molecules and Polymers,” Wiley, Chichester, 1997, pp. 505- 572.
[11] R. Khan and M. Dhayal, “Chitosan/Polyaniline Hybrid Conducting Biopolymer Base Impedimetric Immunosensor to Detect Ochratoxin-A,” Biosensors & Bioelectronics, Vol. 24, 2009, pp.1700-1705. doi:10.1016/j.bios.2008.08.046
[12] R. Khan, A.Kaushik and A. P. Mishra, “Immobilization of Cholesterol Oxidase onto Electrochemically Polymerized Film of Biocompatible Polyaniline-Triton X-100,” Materials Science and Engineering: C, Vol. 29, 2009, pp. 1399-1403. doi:10.1016/j.msec.2008.11.001
[13] R. Khan, P. R. Solanki, A. Kaushik, S. P. Singh, S.Ahmad and B. D. Malhotra, “Cholesterol Biosensor Based on Electrochemically Prepared Polyaniline Conducting Polymer Film in Presence of a Nonionic Surfactant,” Journal of Polymer Research, Vol. 16, 2009, pp. 363-373. doi:10.1007/s10965-008-9237-8
[14] A. Ansari, R. Khan, K. N. Sood and B. D. Malhotra, “Polyaniline-Cerium Oxide Nanocomposite for Hydrogen Peroxide Sensor,” Journal of Nanoscience & Nanotechnology, Vol. 9, 2009, pp. 4679-4685. doi:10.1166/jnn.2009.1085
[15] A. Kaushik, J. Kumar, M. K. Tiwari, R. Khan, B. D. Malhotra, V. Gupta and S. P. Singh, “Fabrication and Characterization of Polyaniline – ZnO Hybrid Nanocomposite Thin Film,” Journal of Nanoscience & Nanotechnology, Vol. 8, 2008, pp. 1757-1761. doi:10.1166/jnn.2008.006
[16] A. Kaushik, R. Khan, V. Gupta, B. D. Malhotra and S. P. Singh, “Hybrid Cross-Linked Polyaniline -WO3 NanoComposite Thin Film Using Thermal Vacuum Deposition Technique for NOx Gas Sensing,” Journal of Nanoscience & Nanotechnology, Vol.9, 2009, pp. 1792-1796. doi:10.1166/jnn.2009.417
[17] D. Y. Godovsky, A. E. Vorfolomeer, D. F. Zaretskya and R. L. N. Chandrakanthi, “Preparation of Nanocomposites of Polyaniline and Inorganic Semiconductors,” Journal of Material Chemistry, Vol. 11, 2005, pp. 2465-2469. doi:10.1039/b103048p
[18] E. I. Iwuoha, S. E. Mavundla, V. S. Somerset, L. F. Petrik, M. J. Klink, M. Sekota and P. Bakers, “Electrochemical and Spectroscopic Properties of Fly Ash-Polyaniline Matrix Nanorod Composites,” Microchimica Acta, Vol. 155, 2006, pp. 453-458. doi:10.1007/s00604-006-0584-z
[19] C. A. Rees, J. L. Provis, G. C. Lukeya and J. S. J. van Deventer, “Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging,” Langmuir, Vol. 23, 2007, pp. 8170-8179. doi:10.1021/la700713g
[20] S. Sathiyanarayanan, S. S. Azim and G. Venkatachari, “Preparation of Polyaniline–Fe2O3 Composite and Its Anticorrosion Performance,” Synthetic Metats, Vol. 157, 2007, pp. 751-757. doi:10.1016/j.synthmet.2007.08.004
[21] Y. Cao, S. Z. Li, Z. J. Xuea and D. Guo, “Spectroscopic and Electrical Characterization of Some Aniline Oligomers and Polyaniline,” Synthetic Metats, Vol. 16, No. 3, 1986, pp. 305-315. doi:10.1016/0379-6779(86)90167-0
[22] J. Libert, J. Cornil, D. A. dos Santos and J. L. Bredas, “A Theoretical Investigation of from Neutral Oligoanilines to Polyanilines: The Chain-Length Dependence of the Elec- tronic and Optical Properties,” Physical Review B, Vol. 56, No. 14, 1997, pp. 8638-8650. doi:10.1103/PhysRevB.56.8638
[23] M. S. Cho, S. Y. Park, J. Y. Hwang and H. J. Choi, “Synthesis and Electrical Properties of Polymer Composites with Polyaniline Nanoparticles,” Materials Science and Engineering: C, Vol. 24, 2004, pp. 15-18. doi:10.1016/j.msec.2003.09.003
[24] H.-J. Glasel, E. Hartmann and J. Hormes “Preparation of Barium Titanate Ultrafine Powders from a Monomeric Metallo-Organic Precursor by Combined Solid-State Polymerisation and Pyrolysis,” Journal of Materials Science, Vol. 34, 1999, pp. 1-5. doi:10.1023/A:1004533926099
[25] G. D. La Puente, G. Marban and E. Fuente, “Modelling of Volatile Product Evolution in Coal Pyrolysis. The Role of Aerial Oxidation,” Journal of Analytical and Applied Pyrolysis, Vol. 44, 1998, pp. 205-218. doi:10.1016/S0165-2370(97)00078-8
[26] A. Arenillas, F. Rubiera, J. J. Pis, M. J. Cuesta, M. J. Iglesias, A. Jimenez and I. Suarez-Ruiz, “Thermal Behaviour during the Pyrolysis of Low Rank Perhydrous Coals,” Journal of Analytical and Applied Pyrolysis, Vol. 68-69, 2003, p. 371. doi:10.1016/S0165-2370(03)00031-7
[27] A. W. Coats and J. R. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature, Vol. 201, 1964, pp. 68-69. doi:10.1038/201068a0
[28] M. V. Kok, E. Ozbas, O. Karacan and C. Hicyilmaz, “Effect of Particle Size on Coal Pyrolysis,” Journal of Analytical and Applied Pyrolysis, Vol. 45, 1998, pp. 103- 110. doi:10.1016/S0165-2370(98)00063-1
[29] P. R. Soloman, M. A. Serio, R. M. Carangelo and J. R. Markham, “Very Rapid Coal Pyrolysis,” Fuel, Vol. 65, 1986, pp. 182-194. doi:10.1016/0016-2361(86)90005-0

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.