Effect of Aging and Sex on Circulating MicroRNAs in Humans


MicroRNAs (miRNAs) have been reported as potentially being useful biomarkers for various diseases including cancer, diabetes mellitus, heart disease, neurological disease and age-related diseases. In the present study, we aimed to determine whether the expression levels of circulating miRNAs in serum were changed with aging or sex. Serum samples from seven elderly males (69.86 ± 1.77 years old) and females (72.43 ± 1.49 years old), and six young males (26.17 ± 0.83 years old) and females (23.17 ± 1.52 years old) were obtained from the subject’s forearm at rest. The expression levels of circulating miR-146a and miR-20a in serum were determined by real-time TaqMan PCR. There were no differences in the expression levels of miR-146a between all groups. There was a significant interaction in this main effect where miR-20a levels were significantly lower in elderly male subjects when compared to young male subjects with no difference observed in young or elderly female subjects (p = 0.004 and p = 0.971, respectively). These results suggest that not all the miRNAs in the circulation are influenced by the effect of aging, but only some miRNAs may be selectively changed by the effect of aging.

Share and Cite:

Sawada, S. , Akimoto, T. , Takahashi, M. , Sakurai, R. , Shinkai, S. , Ushida, T. , Fujiwara, Y. and Suzuki, K. (2014) Effect of Aging and Sex on Circulating MicroRNAs in Humans. Advances in Aging Research, 3, 152-159. doi: 10.4236/aar.2014.32023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kloosterman, W.P. and Plasterk, R.H. (2006) The Diverse Functions of MicroRNAs in Animal Development and Disease. Developmental Cell, 11, 441-450.
[2] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
[3] De Smaele, E., Ferretti, E. and Gulino, A. (2010) MicroRNAs as Biomarkers for CNS Cancer and Other Disorders. Brain Research, 1338, 100-111.
[4] Rao, P., Benito, E. and Fischer, A. (2013) MicroRNAs as Biomarkers for CNS Disease. Frontiers in Molecular Neuroscience, 6, 39.
[5] Li, C., Pei, F., Zhu, X., Duan, D.D. and Zeng, C. (2012) Circulating MicroRNAs as Novel and Sensitive Biomarkers of Acute Myocardial Infarction. Clinical Biochemistry, 45, 727-732.
[6] Wang, G.K., Zhu, J.Q., Zhang, J.T., Li, Q., Li, Y., He, J., Qin, Y.W. and Jing, Q. (2010) Circulating MicroRNA: A Novel Potential Biomarker for Early Diagnosis of Acute Myocardial Infarction in Humans. European Heart Journal, 31, 659-666.
[7] Olivieri, F., Rippo, M.R., Procopio, A.D. and Fazioli, F. (2013) Circulating Inflamma-MiRs in Aging and Age-Related Diseases. Front Genetics, 4, 121.
[8] Kosaka, N., Iguchi, H. and Ochiya, T. (2010) Circulating MicroRNA in Body Fluid: A New Potential Biomarker for Cancer Diagnosis and Prognosis. Cancer Science, 101, 2087-2092.
[9] Madhavan, D., Cuk, K., Burwinkel, B. and Yang, R. (2013) Cancer Diagnosis and Prognosis Decoded by Blood-Based Circulating MicroRNA Signatures. Front Genetics, 4, 116.
[10] Zen, K. and Zhang, C.Y. (2012) Circulating MicroRNAs: A Novel Class of Biomarkers to Diagnose and Monitor Human Cancers. Medicinal Research Reviews, 32, 326-348.
[11] Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., Li, Q., Li, X., Wang, W., Zhang, Y., Wang, J., Jiang, X., Xiang, Y., Xu, C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J. and Zhang, C.Y. (2008) Characterization of MicroRNAs in Serum: A Novel Class of Biomarkers for Diagnosis of Cancer and Other Diseases. Cell Research, 18, 997-1006.
[12] Vogel, B., Keller, A., Frese, K.S., Leidinger, P., Sedaghat-Hamedani, F., Kayvanpour, E., Kloos, W., Backe, C., Thanaraj, A., Brefort, T., Beier, M., Hardt, S., Meese, E., Katus, H.A. and Meder, B. (2013) Multivariate MiRNA Signatures as Biomarkers for Non-Ischaemic Systolic Heart Failure. European Heart Journal, 34, 2812-2822.
[13] Morgan, C.P. and Bale, T.L. (2012) Sex Differences in MicroRNA Regulation of Gene Expression: No Smoke, Just MiRs. Biology of Sex Differences, 3, 22.
[14] Ji, J., Shi, J., Budhu, A., Yu, Z., Forgues, M., Roessler, S., Ambs, S., Chen, Y., Meltzer, P.S., Croce, C.M., Qin, L.X., Man, K., Lo, C.M., Lee, J., Ng, I.O., Fan, J., Tang, Z.Y., Sun, H.C. and Wang, X.W. (2009) MicroRNA Expression, Survival, and Response to Interferon in Liver Cancer. New England Journal of Medicine, 361, 1437-1447.
[15] Zhang, X., Azhar, G. and Wei, J.Y. (2012) The Expression of MicroRNA and MicroRNA Clusters in the Aging Heart. PLoS One, 7, e34688.
[16] Boon, R.A., Iekushi, K., Lechner, S., Seeger, T., Fischer, A., Heydt, S., Kaluza, D., Tréguer, K., Carmona, G., Bonauer, A., Horrevoets, A.J., Didier, N., Girmatsion, Z., Biliczki, P., Ehrlich, J.R., Katus, H.A., Müller, O.J., Potente, M., Zeiher, A.M., Hermeking, H. and Dimmeler, S. (2013) MicroRNA-34a Regulates Cardiac Ageing and Function. Nature, 495, 107-110.
[17] Kuilman, T., Michaloglou, C., Mooi, W.J. and Peeper, D.S. (2010) The Essence of Senescence. Genes & Development, 24, 2463-2479.
[18] Christoffersen, N.R., Shalgi, R., Frankel, L.B., Leucci, E., Lees, M., Klausen, M., Pilpel, Y., Nielsen, F.C., Oren, M., and Lund, A.H. (2010) p53-Independent Upregulation of MiR-34a during Oncogene-Induced Senescence Represses MYC. Cell Death and Differentiation, 17, 236-245.
[19] Olivieri, F., Lazzarini, R., Recchioni, R., Marcheselli, F., Rippo, M.R., Di Nuzzo, S., Albertini, M.C., Graciotti, L., Babini, L., Mariotti, S., Spada, G., Abbatecola, A.M., Antonicelli, R., Franceschi, C. and Procopio, A.D. (2013) MiR146a as Marker of Senescence-Associated Pro-Inflammatory Status in Cells Involved in Vascular Remodelling. Age (Dordr), 35, 1157-1172.
[20] Park, S., Kang, S., Min, K.H., Hwang, K.W. and Min, H. (2013) Age-Associated Changes in MicroRna Expression in Bone Marrow Derived Dendritic Cells. Immunological Investigations, 42, 179-190.
[21] Hackl, M., Brunner, S., Fortschegger, K., Schreiner, C., Micutkova, L., Mück, C., Laschober, G.T., Lepperdinger, G., Sampson, N., Berger, P., Herndler-Brandstetter, D., Wieser, M., Kühnel, H., Strasser, A., Rinnerthaler, M., Breitenbach, M., Mildner, M., Eckhart, L., Tschachler, E., Trost, A., Bauer, J.W., Papak, C., Trajanoski, Z., Scheideler, M., Grillari-Voglauer, R., Grubeck-Loebenstein, B., Jansen-Dürr, P. and Grillari, J. (2010) MiR-17, MiR-19b, MiR-20a, and MiR-106a Are Down-Regulated in Human Aging. Aging Cell, 9, 291-296.
[22] Greussing, R., Hackl, M., Charoentong, P., Pauck, A., Monteforte, R., Cavinato, M., Hofer, E., Scheideler ,M., Neuhaus, M., Micutkova, L., Mueck, C., Trajanoski, Z., Grillari, J. and Jansen-Dürr, P. (2013) Identification of MicroRNA-mRNA Functional Interactions in UVB-Induced Senescence of Human Diploid Fibroblasts.BMC Genomics, 14, 224.
[23] Hong, L., Lai, M., Chen, M., Xie, C., Liao, R., Kang, Y.J., Xiao, C., Hu, W.Y., Han, J. and Sun, P. (2010) The MiR17-92 Cluster of MicroRNAs Confers Tumorigenicity by Inhibiting Oncogene-Induced Senescence. Cancer Research, 70, 8547-8557.
[24] Poliseno, L., Pitto, L., Simili, M., Mariani, L., Riccardi, L., Ciucci, A., Rizzo, M., Evangelista, M., Mercatanti, A., Pandolfi, P.P. and Rainaldi, G. (2008) The Proto-Oncogene LRF Is under Post-Transcriptional Control of MiR-20a: Implications for Senescence. PLoS ONE, 3, e2542.
[25] Wang, M., Cheng, Z., Tian, T., Chen, J., Dou, F., Guo, M. and Cong, Y.S. (2011) Differential Expression of Oncogenic MiRNAs in Proliferating and Senescent Human Fibroblasts. Molecular and Cellular Biochemistry, 352, 271-279.
[26] Olivieri, F., Spazzafumo, L., Santini, G., Lazzarini, R., Albertini, M.C., Rippo, M.R., Galeazzi, R., Abbatecola, A.M., Marcheselli, F., Monti, D., Ostan, R., Cevenini, E., Antonicelli, R., Franceschi, C. and Procopio, A.D. (2012) Age-Related Differences in the Expression of Circulating MicroRNAs: MiR-21 as a New Circulating Marker of Inflammaging. Mechanisms of Ageing and Development, 133, 675-685.
[27] Hooten, N., Fitzpatrick, M., Wood 3rd, W.H., De, S., Ejiogu, N., Zhang, Y., Mattison, J.A., Becker, K.G., Zonderman, A.B. and Evans, M.K. (2013) Age-Related Changes in MicroRNA Levels in Serum. Aging (Albany NY), 5, 725-740.
[28] Baggish, A.L., Hale, A., Weiner, R.B., Lewis, G.D., Systrom, D., Wang, F., Wang, T.J. and Chan, S.Y. (2011) Dynamic Regulation of Circulating MicroRNA during Acute Exhaustive Exercise and Sustained Aerobic Exercise Training. The Journal of Physiology, 589, 3983-3994.
[29] Sawada, S., Kon, M., Wada, S., Ushida, T., Suzuki, K. and Akimoto, T. (2013) Profiling of Circulating MicroRNAs after a Bout of Acute Resistance Exercise in Humans. PLoS ONE, 8, e70823.
[30] Wang, G., Tam, L.S., Li, E.K., Kwan, B.C., Chow, K.M., Luk, C.C., Li, P.K. and Szeto, C.C. (2010) Serum and Urinary Cell-Free MiR-146a and MiR-155 in Patients with Systemic Lupus Erythematosus. The Journal of Rheumatology, 37, 2516-2522.
[31] Wang, J.F., Yu, M.L., Yu, G., Bian, J.J., Deng, X.M., Wan, X.J. and Zhu, K.M. (2010) Serum MiR-146a and MiR-223 as Potential New Biomarkers for Sepsis. Biochemical and Biophysical Research Communications, 394, 184-188.
[32] Gui, J., Tian, Y., Wen, X., Zhang, W., Zhang, P., Gao, J., Run, W., Tian, L., Jia, X. and Gao, Y. (2011) Serum MicroRNA Characterization Identifies MiR-885-5p as a Potential Marker for Detecting Liver Pathologies. Clinical Science (London), 120, 183-193.
[33] Bala, S., Tilahun, Y., Taha, O., Alao, H., Kodys, K., Catalano, D. and Szabo, G. (2012) Increased MicroRNA-155 Expression in the Serum and Peripheral Monocytes in Chronic HCV Infection. Journal of Translational Medicine, 10, 151.
[34] Shen, J., Hruby, G.W., McKiernan, J.M., Gurvich, I., Lipsky, M.J., Benson, M.C. and Santella, R.M. (2012) Dysregulation of Circulating MicroRNAs and Prediction of Aggressive Prostate Cancer. The Prostate, 72, 1469-1477.
[35] Chen, J., Yao, D., Li, Y., Chen, H., He, C., Ding, N., Lu, Y., Ou, T., Zhao, S., Li, L. and Long, F. (2013) Serum MicroRNA Expression Levels Can Predict Lymph Node Metastasis in Patients with Early-Stage Cervical Squamous Cell Carcinoma. International Journal of Molecular Medicine, 32, 557-567.
[36] Shrivastava, S., Petrone, J., Steele, R., Lauer, G.M., Di Bisceglie, A.M. and Ray, R.B. (2013) Up-Regulation of Circulating MiR-20a Is Correlated with Hepatitis C Virus-Mediated Liver Disease Progression. Hepatology, 58, 863-871.
[37] Zeng, X., Xiang, J., Wu, M., Xiong, W., Tang, H., Deng, M., Li, X., Liao, Q., Su, B., Luo, Z., Zhou, Y., Zhou, M., Zeng, Z., Li, X., Shen, S., Shuai, C., Li, G., Fang, J. and Peng, S. (2012) Circulating MiR-17, MiR-20a, MiR-29c, and MiR-223 Combined as Non-Invasive Biomarkers in Nasopharyngeal Carcinoma. PLoS ONE, 7, e46367.
[38] Schwarzenbach, H., Milde-Langosch, K., Steinbach, B., Müller, V. and Pantel, K. (2012) Diagnostic Potential of PTEN-Targeting MiR-214 in the Blood of Breast Cancer Patients. Breast Cancer Research and Treatment, 134, 933-941.
[39] Liu, R., Zhang, C., Hu, Z., Li, G., Wang, C., Yang, C., Huang, D., Chen, X., Zhang, H., Zhuang, R., Deng, T., Liu, H., Yin, J., Wang, S., Zen, K., Ba, Y. and Zhang, C.Y. (2011) A Five-MicroRNA Signature Identified from Genome-Wide Serum MicroRna Expression Profiling Serves as a Fingerprint for Gastric Cancer Diagnosis. European Journal of Cancer, 47, 784-791.
[40] Carlsen, A.L., Schetter, A.J., Nielsen, C.T., Lood, C., Knudsen, S., Voss, A., Harris, C.C., Hellmark, T., Segelmark, M., Jacobsen, S., Bengtsson, A.A. and Heegaard, N.H. (2013) Circulating MicroRNA Expression Profiles Associated with Systemic Lupus Erythematosus. Arthritis & Rheumatism, 65, 1324-1334.
[41] Akbas, F., Coskunpinar, E., Aynaci, E., Oltulu, Y.M. and Yildiz, P. (2012) Analysis of Serum Micro-RNAs as Potential Biomarker in Chronic Obstructive Pulmonary Disease. Experimental Lung Research, 38, 286-294.
[42] Hayflick, L. and Moorhead, P.S. (1961) The Serial Cultivation of Human Diploid Cell Strains. Experimental Cell Research, 25, 585-621.
[43] Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y. and Campisi, J. (2008) Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor. PLoS Biology, 6, 2853-2868.
[44] Kuilman, T., Michaloglou, C., Vredeveld, L.C., Douma, S., van Doorn, R., Desmet, C.J., Aarden, L.A., Mooi, W.J. and Peeper, D.S. (2008) Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network. Cell, 133, 1019-1031.
[45] Coppé, J.P., Patil, C.K., Rodier, F., Krtolica, A., Beausejour, C.M., Parrinello, S., Hodgson, J.G., Chin, K., Desprez, P.Y. and Campisi, J. (2010) A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen. PLoS ONE, 5, e9188.
[46] Acosta, J.C., O’Loghlen, A., Banito, A., Guijarro, M.V., Augert, A., Raguz, S., Fumagalli, M., Da Costa, M., Brown, C., Popov, N., Takatsu, Y., Melamed, J., di Fagagna, F.D., Bernard, D., Hernando, E. and Gil, J. (2008) Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell, 133, 1006-1018.
[47] Takahashi, A., Imai, Y., Yamakoshi, K., Kuninaka, S., Ohtani, N., Yoshimoto, S., Hori, S., Tachibana, M., Anderton, E., Takeuchi, T., Shinkai, Y., Peters, G., Saya, H. and Hara, E. (2012) DNA Damage Signaling Triggers Degradation of Histone Methyltransferases through APC/CCdh1 in Senescent Cells. Molecular Cell, 45, 123-131.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.