[1]
|
Rudin, L.I., Osher, S. and Fatemi, E. (1992) Nonlinear Total Variation Noise Removal Algorithms. Physica D, 60, 259-268. http://dx.doi.org/10.1016/0167-2789(92)90242-F
|
[2]
|
Aubert, G. and Vese, L. (1997) A Variantal Method in Image Recovery. SIAM Journal of Numerical Analysis, 34, 1948-1979. http://dx.doi.org/10.1137/S003614299529230X
|
[3]
|
Chen, L.-X., Song, G.X., Ding, X.-H. and Wang X.-D. (2009) Improved Total Variation Algorithms to Remove Noise. Acta Photonica Sinica, 38, 1000-1004.
|
[4]
|
Combettes, P.L. and Pesquet, J.-C. (2004) Image Restoration Subject to a Total Variation Constraint. IEEE Transactions on Image Processing, 13, 1213-1222. http://dx.doi.org/10.1109/TIP.2004.832922
|
[5]
|
Vese, L.A. and Oshers, J. (2003) Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing. Journal of Scientific Computing, 19, 553-572. http://dx.doi.org/10.1023/A:1025384832106
|
[6]
|
Bonettini, S. and Ruggiero, V. (2012) On the Convergence of Primal-Dual Hybrid Gradient Algorithms for Total Variation Image Restoration. Journal of Mathematical Imaging and Vision, 44, 236-253.
|
[7]
|
Zhang, Y.D. and Wu, L.N. (2012) A Robust Hybrid Restarted Simulated Annealing Particle Swarm Optimization Technique. Advances in Computer Science and Its Applications, 1, 5-8.
|
[8]
|
Lysaker, M. and Tai, X.-C. (2006) Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional. International Journal of Computer Vision, 66, 5-18. http://dx.doi.org/10.1007/s11263-005-3219-7
|
[9]
|
Michailovich, O.V. (2011) An Iterative Shrinkage Approach to Total-Variation Image Restoration. IEEE Transactions on Image Processing, 20, 1281-1299. http://dx.doi.org/10.1109/TIP.2010.2090532
|