Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion


Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.

Share and Cite:

El Naschie, M. (2014) Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion. International Journal of Astronomy and Astrophysics, 4, 332-339. doi: 10.4236/ijaa.2014.42027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Duff, M.J. (1999) The World in Eleven Dimensions. Instute of Physical Publications, Bristol.
[2] Penrose, R. (2004) The Road to Reality. Jonathan Cape, London.
[3] Cartan, E. (1926) Espaces á connexion affine, projective et conforme. Acta Mathematica, 48, 4-42.
[4] Czajko, J. (2004) Elie Cartan and Pan-Geometry of Multispatial Hyperspace. Chaos, Solitons & Fractals, 19, 479-502. http://dx.doi.org/10.1016/S0960-0779(03)00254-6
[5] Kaku, M. (1999) Introduction to Superstrings and M-Theory. Springer, New York.
[6] Becker, K., Becker, M. and Schwarz, J.H. (2007) String Theory and M-Theory. Cambridge University Press, Cambridge.
[7] El Naschie, M.S. (2009) On the Witten-Duff Five Branes Model Together with Knots Theory and E8E8 Superstrings in a Single Fractal Spacetime Theory. Chaos, Solitons & Fractals, 41, 2016-2021. http://dx.doi.org/10.1016/j.chaos.2008.08.005
[8] El Naschie, M.S. (2008) Using Witten’s Five Brane Theory and the Holographic Principle to Derive the Value of the Electromagnetic Fine Structure Constant = 1/137. Chaos, Solitons & Fractals, 38, 1051-1053. http://dx.doi.org/10.1016/j.chaos.2008.06.001
[9] El Naschie, M.S. (2008) Fuzzy Knot Theory Interpretation of Yang-Mills Instantons and Witten’s 5 Brane Model. Chaos, Solitons & Fractals, 38, 1349-1354.
[10] He, J.-H. and Marek-Crnjac, L. (2013) The Quintessence of El Naschie’s Theory of Fractal Relativity and Dark Energy. Fractal Spacetime & Noncommutative Geometry in Quantum & High Energy Physics, 3, 130-137.
[11] Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) The Three Page Guide to the Most Important Results of M.S. El Naschie’s Research in E-Infinity and Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145. http://dx.doi.org/10.4236/ojm.2013.34020
[12] Marek-Crnjac, L. (2013) An Invitation to El Naschie’s Theory of Cantorian Spacetime and Dark Energy. International Journal of Astronomy and Astrophysics, 3, 464-471.
[13] El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646.
[14] El Naschie, M.S. (2013) Experimentally Based Theoretical Arguments That Unruh’s Temperature, Hawkings’s Vacuum Fluctuation and Rindler’s Wedge Are Physically Real. American Journal of Modern Physics, 2, 357-361. http://dx.doi.org/10.11648/j.ajmp.20130206.23
[15] El Naschie, M.S. and Helal, A. (2013) Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3, 318-343. http://dx.doi.org/10.4236/ijaa.2013.33037
[16] El Naschie, M.S. (2014) Dark Energy Explained via Quantum Field Theory in Curved Spacetime. Journal of Modern Physics and Applications, 2, 1-7.
[17] El Naschie, M.S. (2013) The Missing Dark Energy of the Cosmos from Light Cone Topological Velocity and Scaling the Planck Scale. Open Journal of Microphysics, 3, 64-70.
[18] El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schr?dinger Quantum Wave. Journal of Modern Physics, 4, 591-596. http://dx.doi.org/10.4236/jmp.2013.45084
[19] El Naschie, M.S. (2013) A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493. http://dx.doi.org/10.4236/ijaa.2013.34056
[20] El Naschie, M.S. (2013) From Yang-Mills Photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126. http://dx.doi.org/10.4236/jqis.2013.34016
[21] Marek-Crnjac, L., et al. (2013) Chaotic Fractal Tiling for the Missing Dark Energy and Veneziano Model. Applied Mathematics, 4, 22-29. http://dx.doi.org/10.4236/am.2013.411A2005
[22] Hehl, F. (1968) Space-Time as Generalized Cosserat Coninuum. In: Kronev, E., Ed., Mechanics of Generalized Continua, Springer Verlag, Berlin, 347-349. http://dx.doi.org/10.1007/978-3-662-30257-6_43
[23] El Naschie, M.S. (2013) Nash Embedding of Witten’s M-Theory and Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4, 1417-1428. http://dx.doi.org/10.4236/jmp.2013.410170
[24] Geng, C.-Q., Lee, C.-C., Saridakis, E.N. and Wu, Y.-P. (2011) “Teleparallel” Dark Energy. Physics Letters B, 704, 384-387.
[25] Frolov, V. and Zelnikov, A. (2013) Introduction to Black Hole Physics. Oxford University Press, Oxford.
[26] Hehl, F. and Obukhov, Y. (2007) Elie Cartan’s Torsion in Geometry and in Field Theory: An Essay. Annales de la Foundation Louis de Broglie, 32, 38 p.
[27] Burnett, J., Chervova, O. and Vassiliev, D. (2009) Dirac Equation as a Special Case of Cosserat Elasticity. In: Cialdea, A., Lanzara, F. and Ricci, P.E., Eds., Analysis, Partial Differential Equations and Applications—The Vladimir Maz’ya Anniversary Volume, Series Operator Theory: Advances and Applications, Vol. 193, Birkhauser Verlag, 15-29.
[28] El Naschie, M.S. (2007) SU(5) Grand Unification in a Transfinite Form. Chaos, Solitons & Fractals, 32, 370-374. http://dx.doi.org/10.1016/j.chaos.2006.09.018
[29] El Naschie, M.S. (2007) SO(10) Grand Unification in a Fuzzy Setting. Chaos, Solitons & Fractals, 32, 958-961. http://dx.doi.org/10.1016/j.chaos.2006.09.068
[30] El Naschie, M.S. (2008) High Energy Physics and the Standard Model from Exceptional Lie Groups. Chaos, Solitons & Fractals, 36, 1-17. http://dx.doi.org/10.1016/j.chaos.2007.08.058
[31] El Naschie, M.S. (2008) Symmetry Groups Pre-Requisite for E-Infinity in High Energy Physics. Chaos, Solitons & Fractals, 35, 202-211. http://dx.doi.org/10.1016/j.chaos.2007.05.006
[32] El Naschie, M.S. (2008) Notes on Exceptional Lie Symmetry Groups Hierarchy and Possible Implications for E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 35, 69-70.
[33] Duff, M. and von Nieuwenhuizen, P. (1980) Quantum Inequivalence of Different Field Representation. Phys. Ltts, 94B, 179-182. http://dx.doi.org/10.1016/0370-2693(80)90852-7
[34] Duff, M.J. (1999) The World in Eleven Dimensions. Institute of Physics Publications, Bristol.
[35] El Naschie, M.S. (1990) Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw-Hill International Editions: Civil Engineering Series, London, Tokyo.
[36] El Naschie, M.S. (1979) Die Ableitung einer Kosistenten Schalentheorie aud dem dreidimensionalen Kontinuum. ōsterreichische Ingenieur-Zeitshift (Austrian Engineering Journal), 22, 339-344.
[37] El Naschie, M.S. (1974) The Role of Formulation in Elastic Buckling. Ph.D. Thesis, Civil Engineering Department, University College, University of London, April.
[38] El Naschie, M.S. (2006) Is Einstein’s General Field Equation More Fundamental than Quantum Field and Particle Physics? Chaos, Solitons & Fractals, 30, 525-531.
[39] Fry, A.B. (2010) CERN, Dark Energy and Dark Matter. Lindau Nobel Online Community, July 1. Lindau.nature.com/Lindau/2010/07/com-dark-energy-and-dark-matter/
[40] Musser, G. (2013) Does Some Deeper Level of Physics Underlie Quantum Mechanics? An Interview with Nobelist Gerard ’t Hooft. Scientific American, October 7.
[41] Gao, S. (2013) Explaining Holographic Dark Energy. Galaxies, 1, 180-191.
[42] ’t Hooft, G. (2001) A Confrontation with Infinity. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 1-12. http://dx.doi.org/10.1007/978-1-4615-1339-1_1
[43] El Naschie, M.S. (2001) ’t Hooft’s Dimensional Regularization Implies Transfinite Heterotic String Theory and Dimensional Transmutation. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 81-86. http://dx.doi.org/10.1007/978-1-4615-1339-1_7
[44] Challamel, N., Wang, C.M. and Elishakoff, I. (2014) Discrete Systems Behave as Nonlocal Structural Elements: Bending, Buckling and Vibration Analysis. European Journal of Mechanic-A/Solids, 44, 125-135. http://dx.doi.org/10.1016/j.euromechsol.2013.10.007

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.