[1]
|
E. Deeba and D. Rodriguez, Stirling’s and Bernoulli numbers, Amer. Math. Monthly 98 (1991), 423-426.
doi:10.2307/2323860
|
[2]
|
F. T. Howard, Applications of a recurrence for the Bernoulli numbers, J. Number Theory 52(1995), 157-172.
doi:10.1006/jnth.1995.1062
|
[3]
|
D. S. Kim, Identities of symmetry for q-Bernoulli polynomials, submitted.
doi:10.1080/10236190801943220
|
[4]
|
D. S. Kim and K. H. Park, Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S3, submitted.
|
[5]
|
T. Kim, Symmetry p-adic invariant integral on for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), 1267-1277.
|
[6]
|
T. Kim, On the symmetries of the q-Bernoulli polynomials, Abstr. Appl. Anal. 2008(2008), 7 pages(Article ID 914367).
|
[7]
|
T. Kim, K. H. Park, and K. W. Hwang, On the identities of symmetry for the ζ-Euler polynomials of higher-order , Adv. Difference Equ. 2009(2009), 9 pages (Article ID 273545).
|
[8]
|
H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), 258-261. doi:10.2307/2695389
|
[9]
|
S. Yang, An identity of symmetry for the Bernoulli polynomials, Discrete Math. 308 (2008), 550-554.
doi:10.1016/j.disc.2007.03.030
|