Static Crack Propagation of Carbon Nanotube through Non-Bonded Interface of Nanocomposites

Abstract

This study presents an analytical shear-lag model to illustrate the interface crack propagation of carbon nanotube (CNT) reinforced polymer-matrix composites (PMCs) using representative volume element (RVE). In the model, a 3D cylindrical RVE is picked to present the nanocomposite in which CNT/polymer chemically non-bonded interface is taken into consideration. In the non-bonded interface, the stress transfer of CNT is generally considered to be controlled by the combined contribution of mechanical interlocking, thermal residual stress, Poisson’s contraction and van der Waals (vdW) interaction. Since CNT/matrix interface becomes debonded due to crack propagation, vdW interaction which is a function of relative radial displacement of the CNT/matrix interface makes the modeling of the interface tricky and challenging. In order to solve this complexity, an iterative approach is proposed to calculate the vdW interaction for debonded CNT/matrix interface accurately. The analytical results aim to obtain the characteristics load displacement relationship in static crack propagation for CNT reinforced PMCs.

Share and Cite:

Ahmed, K. and Keng, A. (2014) Static Crack Propagation of Carbon Nanotube through Non-Bonded Interface of Nanocomposites. World Journal of Nano Science and Engineering, 4, 42-49. doi: 10.4236/wjnse.2014.42007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ajayan, P.M., Schadler, L.S., Giannaris, C. and Rubio, A. (2000) Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness. Advanced Materials, 12, 750-753.
http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
[2] Ashrafi, B. and Hubert, P. (2006) Modeling the Elastic Properties of Carbon Nanotube Array/Polymer Composites. Composites Science and Technology, 66, 387-396.
http://dx.doi.org/10.1016/j.compscitech.2005.07.020
[3] Bakshi, S.R., Lahiri, D. and Agarwal, A. (2010) Carbon Nanotube Reinforced Metal Matrix Composites—A Review. International Materials Reviews, 55, 41-64.
http://dx.doi.org/10.1179/095066009X12572530170543
[4] Chen, X. (2004) Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites. Computational Materials Science, 29, 1-11.
http://dx.doi.org/10.1016/S0927-0256(03)00090-9
[5] Chen, X.H., Chen, C.S., Xiao, H.N., Liu, H.B., Zhou, L.P. and Li, S.L. (2006) Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits. Tribology International, 39, 22-28.
http://dx.doi.org/10.1016/j.triboint.2004.11.008
[6] Manoharan, M.P., Sharma, A., Desai, A.V., Haque, M.A., Bakis, C.E. and Wang, K.W. (2009) The Interfacial Strength of Carbon Nanofiber Epoxy Composite Using Single Fiber Pullout Experiments. Nanotechnology, 20, Article ID: 295701.
http://dx.doi.org/10.1088/0957-4484/20/29/295701
[7] Wang, W., Ciselli, P., Kuznetsov, E., Peijs, T. and Barber, A.H. (2008) Effective Reinforcement in Carbon Nanotube- Polymer Composites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366, 1613-1626.
http://dx.doi.org/10.1098/rsta.2007.2175
[8] Salehikhojin, A. and Jalili, N. (2008) A Comprehensive Model for Load Transfer in Nanotube Reinforced Piezoelectric Polymeric Composites Subjected to Electro-Thermo-Mechanical Loadings. Composites Part B: Engineering, 39, 986-998.
http://dx.doi.org/10.1016/j.compositesb.2007.12.001
[9] Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000) Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites. Applied Physics Letters, 76, 2868-2870.
http://dx.doi.org/10.1063/1.126500
[10] Qian, D. (2003) Load Transfer Mechanism in Carbon Nanotube Ropes. Composites Science and Technology, 63, 1561- 1569.
http://dx.doi.org/10.1016/S0266-3538(03)00064-2
[11] Liao, K. and Li, S. (2001) Interfacial Characteristics of a Carbon Nanotube-Polystyrene Composite System. Applied Physics Letters, 79, 4225.
http://dx.doi.org/10.1063/1.1428116
[12] Manoharan, M.P., Sharma, A., Desai, A.V., Haque, M.A., Bakis, C.E. and Wang, K.W. (2009) The Interfacial Strength of Carbon Nanofiber Epoxy Composite Using Single Fiber Pullout Experiments. Nanotechnology, 20, 5701-5705.
[13] Kin, L. and Sean, L. (2001) Interfacial Characteristics of a Carbon Nanotube-Polystyrene Composite System. Applied Physics Letters, 79, 4225-4227.
[14] Haque, A. and Ramasetty, A. (2005) Theoretical Study of Stress Transfer in Carbon Nanotube Reinforced Polymer Matrix Composites. Composite Structures, 71, 68-77.
http://dx.doi.org/10.1016/j.compstruct.2004.09.029
[15] Jiang, L., Huang, Y., Jiang, H., Ravichandran, G., Gao, H. and Hwang, K. (2006) A Cohesive Law for Carbon Nanotube/ Polymer Interfaces Based on the van der Waals Force. Journal of the Mechanics and Physics of Solids, 54, 2436-2452.
http://dx.doi.org/10.1016/j.jmps.2006.04.009
[16] Jiang, Y., Zhou, W., Kim, T., Huang, Y. and Zuo, J. (2008) Measurement of Radial Deformation of Single-Wall Carbon Nanotubes Induced by Intertube van der Waals Forces. Physical Review B, 77, Article ID: 153405.
http://dx.doi.org/10.1103/PhysRevB.77.153405
[17] Gao, X. and Li, K. (2005) A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites. International Journal of Solids and Structures, 42, 1649-1667.
http://dx.doi.org/10.1016/j.ijsolstr.2004.08.020
[18] Liu, Y.J. and Chen, X.L. (2003) Continuum Models of Carbon Nanotube-Based Composites Using the Boundary Element Method. Electronic Journal of Boundary Element, 1, 20.
[19] Ahmed, K.S. and Keng, A.K. (2012) A Pull-Out Model for Perfectly Bonded Carbon Nanotube in Polymer Composite Journal of Mechanics of Materials and Structures, 7, 753-764.
[20] Ahmed, K.S. and Keng, A.K. (2013) Interface Characteristics of Nanorope Reinforced Polymer Composites. Computational Mechanics, 52, 571-585.
http://dx.doi.org/10.1007/s00466-013-0833-z
[21] Ahmed, K.S. and Keng, A.K. (2014) Interface Characteristics of Carbon Nanotube Reinforced Polymer Composites Using an Advanced Pull-Out Model. Computational Mechanics, 53, 297-308.
http://dx.doi.org/10.1007/s00466-013-0908-x
[22] Ang, K.K. and Ahmed, K.S. (2013) An Improved Shear-Lag Model for Carbon Nanotube Reinforced Polymer Composites. Composites Part B: Engineering, 50, 7-14.
http://dx.doi.org/10.1016/j.compositesb.2013.01.016
[23] Ahmed, K.S. and Ang, K.K. (2009) Load Transfer Mechanism of Nanotube Reinforced Composite Considering Coulomb Friction and van der Waals Interactions. Proceedings of the 22nd KKCNN Symposium on Civil Engineering, Chiang Mai, 31 October-2 November 2009, 331-336.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.