[1]
|
McMillan, D.E. (1985) Blood Flow and the Localization of Atherosclerotic Plaques. Stroke, 16, 582-587. http://dx.doi.org/10.1161/01.STR.16.4.582
|
[2]
|
Yamamoto, T., Ogasawara, Y., Kimura, A., Tanaka, H., Hiramatsu, O., Tsujioka, K., Lever, M.J., Parker, K.H., Jones, C.J.H., Caro, C.G. and Kajiya, F. (1996) Blood Velocity Profiles in the Human Renal Artery by Doppler Ultrasound and Their Relationship to Atherosclerosis. Arteriosclerosis, Thrombosis & Vascular Biology, 16, 172-177. http://dx.doi.org/10.1161/01.ATV.16.1.172
|
[3]
|
Christopher, J.H., Caro, C.G. and Kajiya, F. (1996) Blood Velocity Profiles in the Human Renal Artery by Doppler Ultrasound and Their Relationship to Atherosclerosis. Arteriosclerosis, Thrombosis & Vascular Biology, 16, 172-177. http://dx.doi.org/10.1161/01.ATV.16.1.172
|
[4]
|
Fred, B.G. (1973) Hemodynamic Theories of Atherogenesis. Circulation Research, 33, 259-266. http://dx.doi.org/10.1161/01.RES.33.3.259
|
[5]
|
Chatzizisis, Y., Jonas, M., Coskun, A., Beigel, R., Stone, B., Maynard, C., Gerrity, R., Daley, W., Rogers, C., Edelman, E., Feldman, C. and Stone, P. (2008) Prediction of the Localization of High-Risk Coronary Atherosclerotic Plaques on the Basis of Low Endothelial Shear Stress. Circulation, 117, 993-1002.
|
[6]
|
Cunningham, K. and Gotlieb, A. (2005) The Role of Shear Stress in the Pathogenesis of Atherosclerosis. Laboratory Investigation, 85, 9-23. http://dx.doi.org/10.1038/labinvest.3700215
|
[7]
|
Akram, M.S. and André, J.D. (2000) Wall Shear Stress and Early Atherosclerosis. AJR American Journal of Roentgenology, 174, 1657-1665. http://dx.doi.org/10.2214/ajr.174.6.1741657
|
[8]
|
Day, M.A. (2004) The No-Slip Condition of Fluid Dynamics. Springer, 285-296.
|
[9]
|
Wilmer, N.W., Michael, F.O. and Charalambos, V.M.D. (2011) McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 755.
|
[10]
|
Howard, A.B. (1997) Thiixotropy. Journal of Non-Newtonian Fluid Mechanism, 70, 1-33. http://dx.doi.org/10.1016/S0377-0257(97)00004-9
|
[11]
|
Oguz, K.B. and Herbert, J.M. (2003) Blood Rheology and Hemodynamics. Seminars in Thrombosis and Hemostasis/Volume 29.
|
[12]
|
Thurston, G.B. (1972) Viscoelasticity of Human Blood. Biophysical Journal, 12, 1205-1217. http://dx.doi.org/10.1016/S0006-3495(72)86156-3
|
[13]
|
Everett, J., Max, A. and I-Dee, C. (1971) Effects of Viscosity and Constraints on the Dispersion and Dissipation of Waves in Large Blood Vessels. Biophysical Journal, 11, 1085-1120. http://dx.doi.org/10.1016/S0006-3495(71)86279-3
|
[14]
|
Sarah, A.H., David, B.T., Ian, T.M. and James, D.C. (2005) Waveform Dispersion, Not Reflection, May Be the Major Determinant of Aortic Pressure Wave Morphology. American Journal of Physiology: Heart and Circulatory Physiology, 289, 2497-2502. http://dx.doi.org/10.1152/ajpheart.00411.2005
|
[15]
|
Christopher, M.Q., David, S.B. and Abraham, N. (2001) Constructive and Destructive Addition of Forward and Reflected Arterial Pulse Waves. American Journal of Physiology. Heart and Circulatory Physiology, 280, H1519-H1527.
|
[16]
|
Weber, T., Auer, J., O’Rourke, M.F., Kvas, E., Lassnig, E., Berent, R. and Eber, B. (2004) Arterial Stiffness, Wave Reflections, and the Risk of Coronary Artery Disease. Circulation, 109, 184-189.
|
[17]
|
Khir, A.W., O’Brien, A., Gibbs, J.S.R. and Parker. K.H. (2001) Determination of Wave Speed and Wave Separation in the Arteries. Journal of Biomechanics, 34, 1145-1155. http://dx.doi.org/10.1016/S0021-9290(01)00076-8
|
[18]
|
Ross, D. and Robertson, J.M. (1950) Shear Stress in a Turbulent Boundary Layer. Journal of Applied Physics, 21, 557. http://dx.doi.org/10.1063/1.1699706
|
[19]
|
Schlichting, H., Gersten, K., Krause, E. and Oertel Jr., M.C. (2004) Boundary-Layer Theory. 8th Edition, Springer, Berlin.
|
[20]
|
Soulis, J., Giannoglou, G., Dimitrakopoulou, M., Papaioannou, V., Logothetides, S. and Mikhailidis, D. (2009) Influence of Oscillating Flow on LDL Transport and Wall Shear Stress in the Normal Aortic Arch. The Open Cardiovascular Medicine Journal, 3, 128-142. http://dx.doi.org/10.2174/1874192400903010128
|
[21]
|
Lantz, J. (2013) On Aortic Blood Flow Simulations: Scale-Resolved Image-Based CFD. Linköping Studies in Science and Technology Dissertation No. 1493, Department of Management and Engineering Linköping University SE-58183, Linköping.
|
[22]
|
Markl, M., Brendecke, S., Simon, J., Frydrychowicz, A. and Harloff, A. (2010) Coregistration of Wall Shear Stress and Plaque Distribution within the Thoracic Aorta of Acute Stroke Patients. Proceedings of the International Society for Magnetic Resonance in Medicine, 18, 63.
|
[23]
|
Korpas, D., Halek, J. and Dolezal, L. (2009) Parameters Describing the Pulse Wave. Physiological Research, 58, 473-479.
|
[24]
|
Vincent, J.F.V. (1990) Structural Biomaterials. Princeton University Press, Princeton, 244.
|
[25]
|
Halliday, D., Resnick, R. and Walker, J. (2011) Fundamentals of Physics. John Wiley and Sons, New York, 1328.
|
[26]
|
de Cindio, B., Gabriele, D., Catapano, G., Fata, P., Hackel, R. and Bonofiglio, R. (2007) The Blood Rheology in Renal Pathology. Annali Dell Istituto Superiore Di Sanita, 43, 156-163.
|
[27]
|
Puig-de-Morales-Marinkovic, M., Turner, K.T., Butler, J.P., Fredberg, J.J. and Suresh, S. (2007) Viscoelasticity of the Human Red Blood Cell. American Journal of Physiology: Cell Physiology, 293, 597-605.
|
[28]
|
Martinez, G.V., Dykstra, E.M., Lope-Piedrafita, S. and Brown, M.F. (2004) Lanosterol and Cholesterol-Induced Variations in Bilayer Elasticity Probed by 2H NMR Relaxation. Langmuir, 20, 1043-1046. http://dx.doi.org/10.1021/la036063n
|
[29]
|
Liu, X., Pu, F., Fan, Y.B., Deng, X.Y., Li, D.Y. and Li, S.Y. (2009) A Numerical Study on the Flow of Blood and the Transport of LDL in the Human Aorta: The Physiological Significance of the Helical Flow in the Aortic Arch. American Journal of Physiology: Heart and Circulatory Physiology, 297, H163-H170. http://dx.doi.org/10.1152/ajpheart.00266.2009
|