[1]
|
Kutluay, S., Esen, A. and Tasbozan, O. (2010) The -Expansion Method for Some Nonlinear Evolution Equations. Applied Mathematics and Computation, 217, 384-391. http://dx.doi.org/10.1016/j.amc.2010.05.073
|
[2]
|
Aslan, I. and Ozis, T. (2009) On the Validity and Reliability of the -Expansion Method by Using Higher-Order Nonlinear Equations. Applied Mathematics and Computation, 211, 531-536. http://dx.doi.org/10.1016/j.amc.2009.01.075
|
[3]
|
Wang, M., Zhang, J. and Li, X. (2008) Application of the -Expansion to Travelling Wave Solutions of the Broer-Kaup and the Approximate Long Water Wave Equations. Applied Mathematics and Computation, 206, 321-326. http://dx.doi.org/10.1016/j.amc.2008.08.045
|
[4]
|
Wazwaz, A.M. (2006) The tanh and the sine-cosine Methods for a Reliable Treatment of the Modified Equal Width Equation and Its Variants. Communications in Nonlinear Science and Numerical Simulation, 11, 148-160. http://dx.doi.org/10.1016/j.cnsns.2004.07.001
|
[5]
|
Yan, C.T. (1996) A Simple Transformation for Nonlinear Waves. Physics Letters A, 224, 77-84. http://dx.doi.org/10.1016/S0375-9601(96)00770-0
|
[6]
|
Parkes, E.J. (2010) Observations on the tanh-coth Expansion Method for Finding Solutions to Nonlinear Evolution Equations. Applied Mathematics and Computation, 217, 1749-1754. http://dx.doi.org/10.1016/j.amc.2009.11.037
|
[7]
|
Wazwaz, A.M. (2005) The tanh Method: Exact Solutions of the Sine-Gordon and Sinh-Gordon Equations. Applied Mathematics and Computation, 167, 1196-1210. http://dx.doi.org/10.1016/j.amc.2004.08.005
|
[8]
|
Biazar, J. and Ghazvini, H. (2007) Exact Solutions for Non-Linear Schrodinger Equations by He’s Homotopy Perturbation Method. Physics Letters A, 366, 79-84. http://dx.doi.org/10.1016/j.physleta.2007.01.060
|
[9]
|
He, J.H. (2005) Application of Homotopy Perturbation Method to Nonlinear Wave Equations. Chaos, Solitons & Fractals, 26, 695-700. http://dx.doi.org/10.1016/j.chaos.2005.03.006
|
[10]
|
Wang, M.L. and Li, X.Z. (2005) Extended F-Expansion Method and Periodic Wave Solutions for the Generalized Zakharov Equations. Physics Letters A, 343, 48-54. http://dx.doi.org/10.1016/j.physleta.2005.05.085
|
[11]
|
Wang, M.L. and Li, X.Z. (2005) Applications of F-Expansion to Periodic Wave Solutions for a New Hamiltonian Amplitude Equation. Chaos, Solitons & Fractals, 24, 1257-1268. http://dx.doi.org/10.1016/j.chaos.2004.09.044
|
[12]
|
Bekir, A. and Boz, A. (2008) Exact Solutions for Nonlinear Evolution Equations Using Exp-Function Method. Physics Letters A, 372, 1619-1625. http://dx.doi.org/10.1016/j.physleta.2007.10.018
|
[13]
|
Ebaid, A. (2007) Exact Solitary Wave Solutions for Some Nonlinear Evolution Equations via Exp-Function Method. Physics Letters A, 365, 213-219. http://dx.doi.org/10.1016/j.physleta.2007.01.009
|
[14]
|
Abdou, M.A., Solimanm, A.A. and El-Basyony, S.T. (2007) New Application of Exp-Function Method for Improved Boussinesq Equation. Physics Letters A, 369, 469-475. http://dx.doi.org/10.1016/j.physleta.2007.05.039
|
[15]
|
Zhu, S.D. (2007) Exp-Function Method for the Discrete mKdV Lattice. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 465-469.
|