Share This Article:

The Synthesis of Solvent-Free TiO2 Nanofluids through Surface Modification

Abstract Full-Text HTML XML Download Download as PDF (Size:1351KB) PP. 46-50
DOI: 10.4236/snl.2011.12008    5,361 Downloads   11,143 Views   Citations

ABSTRACT

TiO2 nanoparticles with surface hydroxyl groups are treated by trimethoxysilane (CH3O)3Si(CH2)3O(CH2CH2O)6-9CH3 and a inorganic core/organic shell hybridmaterials, which shows itself a yellow viscous fluid, is obtained. We call it solvent-free TiO2 nanofliuds. Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and rheometer are adopted to characterize the product. As a result, the content of TiO2 nanoparticles in the nanofliuds is about 5.5wt%, the functionalized TiO2 nanoparticles possess better dispersion, very low viscosity and an obvious liquid-like behavior at room temperature in absence of solvent.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Yu, Y. Zheng and L. Lan, "The Synthesis of Solvent-Free TiO2 Nanofluids through Surface Modification," Soft Nanoscience Letters, Vol. 1 No. 2, 2011, pp. 46-50. doi: 10.4236/snl.2011.12008.

References

[1] Z. X. Yan, J. Deng and Z. M. Luo, “A Comparison Study of the Agglomeration Mechanism of Nano and Micrometer Aluminum Particles,” Materials Characterization, Vol. 61, No. 2, 2010, pp. 198-205. doi:10.1016/j.matchar.2009.11.010
[2] S. L. Kuo, Y. C. Chen, M. D. Ger and W. H. Hwu, “Nano-Particles Dispersion Effect on Ni/Al2O3 Composite Coatings,” Materials Chemistry and Physics, Vol. 86, No. 1, 2004, pp. 5-10. doi:10.1016/j.matchemphys.2003.11.040
[3] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh and P. H. Chen, “Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance,” Material Letters, Vol 58, No. 9, 2004, pp. 1461-1465. doi:10.1016/j.matlet.2003.10.009
[4] D. W. Zhou, “Heat Transfer Enhancement of Copper Nano?uid with Acoustic Cavitation,” International Journal of Heat and Mass Transfer, Vol. 47, No. 14-16, 2004, pp. 3109-3117. doi:10.1016/j.ijheatmasstransfer.2004.02.018
[5] W. Yu, H. Q. Xie, L. F. Chen and Y. Li, “Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol Based Zno Nano?uid,” Thermochimica Acta, Vol 491, No. 1-2, 2009, pp. 92-96. doi:10.1016/j.tca.2009.03.007
[6] C. T. Nguyen, G. Roy, C. Gauthier and N. Galanis, “Heat Transfer Enhancement Using Al2O3–Water Nano?uid for an Electronic Liquid Cooling System,” Applied Thermal Engineering, Vol. 27, No. 8-9, 2007, pp. 1501-1506. doi:10.1016/j.applthermaleng.2006.09.028
[7] D. Milanova and R. Kumar, “Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment,” Journal of Heat Transfer, Vol. 130, No. 4, 2008, pp. 042401- 042407. doi:10.1115/1.2787020
[8] M. E. Meibodi, M. Vafaie-Sefti, A. M. Rashidi, A. Amrollahi, M. Tabasi and H. S. Kalal, “The Role of Different Parameters on The Stability and Thermal Conductivity of Carbon Nanotube/Water Nano?uids,” International Communications in Heat and Mass Transfer, Vol. 37, No. 3, 2010, pp. 319-323. doi:10.1016/j.icheatmasstransfer.2009.10.004
[9] W. T. Jiang, G. L. Ding, H. Peng and H. T. Hu, “Modeling of Nanoparticles’ Aggregation and Sedimentation in Nano?uid,” Current Applied Physics, Vol. 10, No. 3, 2010, pp. 934-941. doi:10.1016/j.cap.2009.11.076
[10] A. N. Eiyad, “Effects of variable viscosity and thermal conductivity of Al2O3–water nano?uid on heat transfer enhancement in natural convection,” Inernational Journal of Heat Fluid Flow, Vol. 30, No. 4, 2009, pp. 679-690.
[11] T. P. Teng, Y. H. Hung, T. C. Teng, H. E. Mo and H. G. Hsu, “The Effect of Alumina/Water Nano?uid Particle Size on Thermal Conductivity,” Applied Thermal Engineering, Vol. 30, No. 14-15, 2010, pp. 2213-2218. doi:10.1016/j.applthermaleng.2010.05.036
[12] K. B. Anoop, T. Sundararajan and S. K. Das, “Effect of Particle Size on the Convective Heat Transfer in Nano?uid in the Developing Region,” International Journal of Heat and Mass Transfer, Vol. 52, No. 9-10, 2009, pp. 2189-2195. doi:10.1016/j.ijheatmasstransfer.2007.11.063
[13] Y. J. Li, J. E. Zhou, S. Tung and E. Schneider, S. Q. Xi, “A Review on Development of Nano?uid Preparation and Characterization,” Powder Technology, Vol. 196, No. 2, 2009, pp. 89-101. doi:10.1016/j.powtec.2009.07.025
[14] A. B. Bourlinos, S. R. Chowdhury, D. D. Jiang and Q. Zhang, “Weakly Solvated PEG-Functionalized Silica Nanoparticles with Liquid-Like Behavior,” Journal of Materials Science, Vol. 40, No. 18, 2005, pp. 5095-5097. doi:10.1007/s10853-005-1301-8
[15] A. B. Bourlinos, R. Herrera, N. Chalkias, D. D. Jiang, Q. Zhang, L. A. Archer and E. P. Giannelis, “Surface-Func- Tionalized Nanoparticals with Liquid-Like Behavior,”Advanced Materials, Vol. 17, No. 2, 2005, pp. 234-237. doi:10.1002/adma.200401060
[16] A. B. Bourlinos, S. R. Chowdhury, R. Herrera, D. D. Jiang, Q. Zhang, L. A. Archer and E. P. Giannelis, “Functionalized Nanostructures with Liquid-Like Behavior: Expanding the Gallery of Available Nanostructures,” Advanced Functional Materials, Vol. 15, No. 8, 2005, pp. 1285-1290. doi:10.1002/adfm.200500076
[17] T. Michinobu, T. Nakanishi, J. P. Hill, M. Funahashi and K. Ariga, “Room Temperature Liquid Fullerenes: An Uncommon Morphology of C60 Derivatives,” Journal of the American Chemical Society, Vol. 128, No. 32, 2006, pp. 10384-10385. doi:10.1021/ja063866z
[18] A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Herrera, S. H. Anastasiadis, D. Petridis and E. P. Giannelis, “Functionalized Zno Nanoparticals with Liquidlike Behavior and Their Photoluminescence Properties,” Small. Vol. 2, 2006, p. 513. doi:10.1002/smll.200500411
[19] J. X. Zhang, Y. P. Zheng, P. Y. Yu, S. Mo and R. M. Wang, “Modified Carbon Nanotubes with Liquid-Like Behavior At 45?C,” Carbon. Vol. 47, No. 12, 2009, p. 2776. doi:10.1016/j.carbon.2009.05.036
[20] J. X. Zhang, Y. P. Zheng, P. Y. Yu, S. Mo and R. M. Wang, “The Synthesis of Functionalized Carbon Nanotubes by Hyperbranched Poly (Amine-Ester) with Liquid-Like Behavior at Room Temperature,” Polymer. Vol. 50, No. 13, 2009, p. 2953. doi:10.1016/j.polymer.2009.04.042
[21] J. X. Zhang, Y. P. Zheng, L. Lan, S. Mo, P. Y. Yu, W. Shi and R. M. Wang, “Direct Synthesis of Solvent-Free Multiwall Carbon Nanotubes/Silica Nonionic Nano?uid Hybrid Material,” Acs Nano, Vol. 3, No. 8, 2009, p. 2185. doi:10.1021/nn900557y
[22] H. Y. Chen and E. Ruckenstein, “Structure and Particle Aggregation in Block Copolymer-Binary Nanoparticle Com- Posites,” Polymer, Vol. 51, No. 24, 2010, p. 5869. doi:10.1016/j.polymer.2010.10.011
[23] H. Y. Chen and E. Ruckenstein, “Nanoparticle aggregation in the presence of a block copolymer,” Journal of Chemical Physics, Vol. 131, No. 24, 2009, article ID 244904. doi:10.1063/1.3280064
[24] S. Q. Huang, Z. G. Sun and S. B. Li, “New Silicone Polymer,” in Chinese, Chemical Industry Press, Beijing, 2004.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.