[1]

Monzon, J.J., Yonte, T. and SanchezSoto, L. (2003) Characterizing the Reflectance of Periodic Lasered Media. Optics Communications, 218, 4347.

[2]

Eremin, Y. and Wriedt, T. (2003) Large Dielectric NonSpherical Particle in an Evanescent Wave Field near a Plane Surface. Optics Communications, 214, 3945.

[3]

Hu, W. and Guo, H. (2002) Ultrashort Pulsed Bessel Beams and Spatially Induced GroupVelocity Dispersio. Journal of the Optical Society of America A, 19, 4952.

[4]

Danae, D., Bienstman, P., Bockstaele, R. and Baets, R. (2002) Rigorous Electromagnetic Analysis of Dipole Emission in Periodically Corrugated Layers: The GratingAssisted ResonantCavity Lightemitting Diode. Journal of the Optical Society of America A, 19, 871880. http://dx.doi.org/10.1364/JOSAA.19.000871

[5]

Larruquert, J.I. (2001) Reflectance Enhancement with SubQuarterwave Multilayers of Highly Absorbing Materials. Journal of the Optical Society of America A, 18, 14061414.

[6]

Kolundzija, B.M. (1999) Electromagnetic Modeling of Composite Metallic and Dielectric Structures. IEEE Transactions on Microwave Theory and Techniques, 47, 10211032.

[7]

Ehlers, R.A. and Metaxas, A.C.R. (2003) 3D FE Discontinuous Sheet for Microwave Heating. IEEE Transactions on Microwave Theory and Techniques, 51, 718726. http://dx.doi.org/10.1109/TMTT.2003.808731

[8]

B′arta, O., Piˇstora, J., Vlˇcek, J., Stanˇek, F. and Kreml, T. (2001) MagnetoOptics in BiGyrotropic Garnet Waveguide. OptoElectronics Review, 9, 320325.

[9]

Broe, J. and Keller, O. (2002) QuantumWell Enhancement of the GoosH¨anchen Shift for pPolarized Beams in a TwoPrism Configuration. Journal of the Optical Society of America A, 19, 12121222. http://dx.doi.org/10.1364/JOSAA.19.001212

[10]

Keller, O. (1995) Optical Response of a QuantumWell Sheet: Internal Electrodynamics. Journal of the Optical Society of America B, 12, 9971005. http://dx.doi.org/10.1364/JOSAB.12.000997

[11]

Keller, O. (1995) SheetModel Description of the Linear Optical Response of Quantum Wells. Journal of the Optical Society of America B, 12, 987997.

[12]

Keller, O. (1997) V: Local Fields in Linear and Nonlinear Optics of Mesoscopic System. Progress in Optics, 37, 257343. http://dx.doi.org/10.1016/S00796638(08)703408

[13]

Grinberg, G.A. and Fok, V.A. (1948) On the Theory of Coastal Refraction of Electromagnetic Waves. In: Vvedenskii, B.A., Ed., Investigations on Propagation of Radio Waves, AN SSSR, 69111.

[14]

Grinchik, N.N. and Dostanko, A.P. (2005) Influence of Thermal and Diffusional Processes on the Propagation of Electromagnetic Waves in Layered Materials. ITMO, Minsk.

[15]

Born, M. (1970) Principles of Optics. Mir, Moscow.

[16]

Kudryavtsev, L. (1970) Mathematical Analysis. Mir, Moscow.

[17]

Frumkin, A. (1987) Electrode Processes. Nauka, Moscow.

[18]

Tikhonov, A. N. and Samarskii, A. A. (1977) Equations of Mathematical Physics. Nauka, Moscow.

[19]

Kryachko, A.F., et al. (2009) Theory of Scattering of Electromagnetic Waves in the Angular Structure. Nauka, Moscow.

[20]

Leontovich, M. (1948) On the Approximate Boundary Conditions for the Electromagnetic Field on the Surface of Well Conducting Bodies. In: Vvedenskii, B.A., Ed., Investigations on Propagation of Radio Waves, AN SSSR, Moscow, 510.

[21]

Grinchik, N.N., Dostanko, A.P., Gishkelyuk, I.A. and Grinchik, Y.N. (2009) Electrodynamics of Layered Media with Boundary Conditions Corresponding to the TotalCurrent Continuum. Journal of Engineering Physics and Thermophysics, 82, 810819. http://dx.doi.org/10.1007/s1089100902461

[22]

Shul’man, Z.P. and Kordonskii, V. I. (1982) Magnetorheological Effect. Nauka i Tekhnika, Minsk.

[23]

Khomich, M. (2006) MagneticAbrasive Machining of the Manufactured Articles. BNTU, Minsk.

[24]

Levin, M.N., et al. (2003) Activation of the Surface of Semiconductors by the Effect of a Pulsed Magnetic Field. Zhurnal Tekhnicheskoi Fiziki, 73, 8587.

[25]

Orlov, A.M., et al. (2001) MagneticStimulated Alteration of the Mobility of Dislocations in the Plastically Deformed Silicon of nType. Fizika Tverdogo Tela, 43, 12071210.

[26]

Makara, V.A., et al. (2001) On the Influence of a Constant Magnetic Field on the Electroplastic Effect in Silicon Crystals. Fizika Tverdogo Tela, 3, 462465.

[27]

Rakomsin, A. P. (2000) Strengthening and Restoration of Items in an Electromagnetic Field. Paradoks, Minsk.

[28]

Golovin, Yu.I., et al. (2007) Influence of Weak Magnetic Fields on the Dynamics of Changes in the Microhardness of Silicon Initiated by LowIntensity BetaIrradiation. Fizika Tverdogo Tela, 49, 822823.

[29]

Makara, V.A., et al. (2008) Magnetic FieldInduced Changes in the Impurity Composition and Microhardness of the NearSurface Layers of Silicon Crystals. Fiz. Tekh. Poluprovadn, 42, 10611064.

[30]

Orlov, A.M., et al. (2003) Dynamics of the Surface Dislocation Ensembles in Silicon in the Presence of Mechanical and Magnetic Perturbation. Fizika Tverdogo Tela, 45, 613617.

[31]

Akulov, N.S. (1961) Dislocations and Plasticity. Izd. ANBSSR, Minsk.

[32]

Akulov, N.S. (1939) Ferromagnetism. ONTI, Leningrad.

[33]

Bazarov, I.P. (1991) Thermodynamics: Textbook for Higher Educational Establishments. Vysshaya Shkola, Moscow.

[34]

Grinchik, N.N., et al. (2010) Electrodynamic Processes in a Surface Layer in Magnetoabrasive Polishing. Journal of Engeneering Physics and Thermodynamics, 83, 638649.

[35]

Einstein, A. (1966) Elementary Theory of Brownian Motion. Collected Papers 3.

[36]

Golant, V.E., et al. (1977) Fundamental Principles of Plasma Physics. Nauka, Moscow.

[37]

Kharkats, Y. (1988) Dependence of the Limiting DiffusionMigration Current on the Degree of Electrolyte Dissociation. Elektrokhimiya, 24, 539541.

[38]

Sokirko, A. and Kharkats, Yu. (1989) The Limiting Diffusion and Migration Currents as Functions of the Rate Constants of Electrolyte Dissociation and Recombination. Elektrokhimiya, 25, 331335.

[39]

Gibbs, D.V. (1982) Thermodynamics. Statistical Mechanics, Moscow.

[40]

Antropov, L.N. (1984) Theoretical Electrochemistry. High School, Moscow.

[41]

Hertz, H.G. (1980) Electrochemistry. SpringerVerlag, New York, 231.

[42]

Levich, V., et al. (1959) Physicochemical Hydrodynamics. Fizmatgiz, Moscow, 699 p.

[43]

Neumann, J. (1977) Electrochemical Systems. MIR, Moscow, 463 p.

[44]

Skorcheletti, V. (1969) Theoretical Electrochemistry. Himya, Leningrad.

[45]

Landau, L.D. and Lifshits, E.M. (1982) Theoretical Physics. 8. Electrodynamics of Continuous Media, Physmathlit, Moscow, 656 p.

[46]

Grinchik, N.N. and Tsurko, V.A. (1999) On the Problem of Modeling Nonstationary Electric Fields in Layered Media. Tr. Inst. Mat. Nats. Akad. Nauk Belarusi, 3/557, 11 p.

[47]

Shvab, A.I. (1994) Integral Operators rot^{1}, div^{1}, grad^{1}. Part 1. Elektrichestvo, 4, 5967.

[48]

Shvab, A.I. and Imo, F. (1994) New Integral Operators rot^{1}, div^{1}, grad^{1}. Part 2. Elektrichestvo, 5, 5559.

[49]

Grinchik, N.N., et al. (1997) Simulation of Electrical Phenomena in Distributed Systems. Vesti Nats. Akad. Nauk Belarusi, Ser. Fiz. Mat. Navuk, 2, 6670.

[50]

Tamm, I.E. (1976) Principles of the Theory of Electricity. Physmathlit, Moscow.

[51]

Stratton, J.A. (1948) The Theory of Electromagnetism. Gostechizdat, Leningrad, 539 p.

[52]

Grinchik, N.N. (1993) DiffusionalElectrical Phenomena in Electrolytes. Journal of Engineering Physics and Thermophysics, 64, 497504. http://dx.doi.org/10.1007/BF00862643

[53]

Grinchik, N.N. (1993) Electrodiffusion Phenomena in Electrolytes. InzhenernoFizicheskii Zhurnal, 64, 610618.

[54]

Grinchik, N.N., et al. (2000) Interaction of Thermal and Electric Phenomena in Polarized Media. Mat. Modelir, 12, 6776.

[55]

Grinchik, N.N. (2008) Modeling of Electrical and Thermophysical Processes in Layered Medium. Belorusskaya Nauka Press, Minsk.

[56]

Grinchik, N.N., Muchynski, A.N., Khmyl, A.A. and Tsurkob, V.A. (1998) FiniteDifferences Method for Modeling Electric Diffusion Phenomena. Matematicheskoe Modelirovanie, 10, 5566.

[57]

Antropov, L.N. (1989) Theoretical Electrochemistry. Highshool, Moscow.

[58]

Kostin, N.A. and Labyak, O.V. (1995) Mathematical Modeling of Pulsed Deposition of Alloys. Elektrokhimiya, 31, 510516.

[59]

Dikusar, A. I. et al. (1989) Thermokinetic Phenomena in HighFrequency Processes. Kishinev.

[60]

Bark, F., Kharkats, Yu. and Vedin, R. (1998) Joule Heating in Electrochemical Cells with Natural Convection and Stratification of the Electrolyte. Elektrokhimiya, 34, 434444.

[61]

Grinchik, N.N. and Tsurko, V.A. (2002) Problem of Modeling of the Interaction of Nonstationary Electric, Thermal and Diffusion Field in Layered Media. Journal of Engeneering Physics and Thermodynamics, 75, 693699.

[62]

Kolesnikov, P. (2001) Theory and Calculation of Waveguides, Light Guides and IntegralOptoelectronics Elements. Electrodynamics and Theory of Waveguides. ITMO NAN Belarusi, Minsk.

[63]

Skanavi, T. (1949) Dielectric Physics (Region of Weak Fields). Gostekhizdat, Moscow.

[64]

Perre, P. and Turner, I.W. (1996) A Complete Coupled Model of the Combined Microwave and Convective Drying of Softwood in an Oversized Waveguid. Proceedings of the 10th International Drying Symposium (IDS’96), Krakow, 1996, 183194.

[65]

J. Jaeger (1977) Methods of Measurement in Electrochemistry. Vol. 2, Mir., Moscow, 475 p.

[66]

Barash, Y. and Ginzburg, V. L. (1976) On the Expressions of Energy Density and the Release of Heat in Electrodynamics of a Dispersing and Absorbing Medium. Uspekhi Fizicheskikh Nauk, 118, 523. http://dx.doi.org/10.3367/UFNr.0118.197603f.0523

[67]

Vakman, D.E. and Vanshtein, L.A. (1977) Amplitude, Phase, Frequency Are the Principal Notions in the Theory of Ossillations. Uspekhi Fizicheskikh Nauk, 123, 657. http://dx.doi.org/10.3367/UFNr.0123.197712f.0657

[68]

Choo, B.T. (1962) Plasma in a Magnetic Field and Direct ThermaltoElectric Energy Conversion. Gosatomizdat. Moscow, 6283.

[69]

Antonets, I.V., Kotov, L.N., Shavrov, V.G. and Shcheglov, V.I. (2009) Energy Characteristics of Propagation of a Wave through the Boundaries of Media with Complex Parameters. Radiotekhnika i Elektronika, 54, 11711183.

[70]

Tamm, I.E. (2003) Foundations of Electricity Theory. Nauka, Moscow.

[71]

Golant, V.E., Zhilinski, A.P. and Sakharov, I.E. (1977) Fundamentals of Plasma Physics. Moscow, 383.

[72]

Blokhintsev, D.I. (1945) Vortex Sound. Journal of Technical Physics, 15, 7281.

[73]

Blokhintsev, D.I. (1981) Acoustics of an Inhomogeneous Moving Medium. Nauka, Moscow, 8487.

[74]

Godin, O.A. (1989) Acoustics of the Ocean Medium. Nauka, Moscow, 217220.

[75]

Razin, A.V. (1990) On the Reflection of a Spherical Acoustic Delta Pulse from the Interface GasSolid. Akustich. Zh., 36, 337339.

[76]

Miniovich, I.A., Pernik, A.D. and Petrovski, V.S. (1971) Hydrodynamic Sources of Sound. Shipbuilding, Leningrad, 2628.

[77]

Grinchik, N.N., Akulich, P.V., Kuts, P.S., et al. (1995) Aeroacoustics of Moving Media (No. 3). Belarus Academy of Sciences Vesti, Minsk, 9195.

[78]

Grinchik, N.N., Akulich, P.V., Kuts, P.S., et al. (1995) Modeling of Unsteady Wave Processes in Moving Media. Journal of Engineering Physics and Thermophysics, 68, 812817.

[79]

Laue, M. (1950) Zs. Phys., Bd., 128, 387.

[80]

Einstein, A. (1965) Collected Works (Vol. 1). Nauka, Moscow, 12.

[81]

Sommerfeld, A. (1987) Ann. Phys., Bd., 44, 177.

[82]

Grinchik, N.N.Yu. (2012) Grinchik Fundamental Problems of the Electrodynamics of Heterogeneons Media. Physics Research International, 2012, Article ID: 185647. http://dx.doi.org/10.1155/2012/185647

[83]

Grinchik, N.N., et al. (2011) Electromagnetic Wave Propagation in Complex Matter. Intech, Rijeka.
