Potentiality of Clay Raw Materials from Northern Morocco in Ceramic Industry: Tetouan and Meknes Areas

DOI: 10.4236/jmmce.2014.23019   PDF   HTML   XML   4,790 Downloads   6,110 Views   Citations


This study aims at evaluating the potential suitability of Tetouan and Meknes (central Morocco) clay material as raw materials in various ceramic applications by investigating their textural, chemical, thermal and firing characteristics. Textural properties were identified by specific surface area, cation exchange capacity (CEC) and bulk density (ρs). Chemical and thermal properties were assessed using XRF and TG/DTA techniques, respectively. Firing characteristics at temperatures from 800℃ to 1100℃ were determined by linear firing shrinkage, loss on weight and water absorption capacity. The Meknes clays are characterised by medium cation exchange capacity (CEC) and specific surface area (SSA) values due to their moderate smectite content. The Tetouan clays have medium to low CEC and medium SSA values. The main oxides in the clayey samples are SiO2 (35 - 54.3 wt%), Al2O3 (20.6 - 43.9 wt%), and Fe2O3 (9.7 - 22.4 wt%). The amount of CaO in Meknes clays ranges from 8 to 12 wt%, whereas CaO is only present in some Tetouan clay (TE4, TE7, TN4 and TN5). A significant densification of ceramic behaviour could be noticed for most of Tetouan clays at firing temperatures above 1000℃. Meknes clays show earlier densification from 800℃. The chemical, textural and ceramic properties of Tetouan and Meknes clays indicate their suitability as raw materials for the production of structural ceramics. The high amount of Fe2O3 in all clays makes them inappropriate in fine ceramics.

Share and Cite:

El Ouahabi, M. , Daoudi, L. , De Vleeschouwer, F. , Bindler, R. and Fagel, N. (2014) Potentiality of Clay Raw Materials from Northern Morocco in Ceramic Industry: Tetouan and Meknes Areas. Journal of Minerals and Materials Characterization and Engineering, 2, 145-159. doi: 10.4236/jmmce.2014.23019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bauluz, B., Mayayo, M.J., Fernández-Nieto, C., Cultrone, G. and González López, J.M. (2003) Assessment of Technological Properties of Calcareous and Non-Calcareous Clays Used for the Brick-Making Industry of Zaragoza (Spain). Applied Clay Science, 24, 121-126.
[2] Gomes, C. (1989) Argilas. O que sãoe para que servem. Fundação Calouste Gulbenkian, Lisboa.
[3] Hajjaji, M., Kacim, S. and Boulmane, M. (2002) Mineralogy and Firing Characteristics of a Clay from the Valley of Ourika (Morocco). Applied Clay Science, 21, 203-212.
[4] Verduch, A.G. (1995) Características de las Arcillas Empleadas en la Fabricación de Ladrillos. Técnica Cerámica, 232, 214-228.
[5] Fabbri, B. (1994) Quality Assurance of Ceramic Clays—A Deeper Understanding. Schmid, Freiburg, Allemagne.
[6] Sánchez, E., Ginés, F., Agramunt, J. and Monzó, M. (1998) Control de calidad de las arcillas empleadas en la fabricación de los soportes de baldosas cerámicas. Proceedings Qualicer, 98, 97-112.
[7] Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York.
[8] Moore, D.M. and Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, New York.
[9] Bergaya, F. and Lagaly, G. (2006) Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science. In: Faïza Bergaya, B.K.G.T. and Gerhard, L., Eds., Developments in Clay Science, 1-18.
[10] Sousa, S.J.G. and Holanda, J.N.F. (2005) Development of Red Wall Tiles by the Dry Process Using Brazilian Raw Materials. Ceramics International, 31, 215-222.
[11] Sousa, S. and Holanda, J. (2007) Thermal Transformations of Red Wall Tile Pastes. Journal of Thermal Analysis and Calorimetry, 87, 423-428. http://dx.doi.org/10.1007/s10973-006-7030-7
[12] Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Pellacani, G. and Melo, U.C. (2007) Characterisation of Porcelain Compositions Using Two China Clays from Cameroon. Ceramics International, 33, 851-857. http://dx.doi.org/10.1016/j.ceramint.2006.01.025
[13] Alcântara, A.C.S., Beltrão, M.S.S., Oliveira, H.A., Gimenez, I.F. and Barreto, L.S. (2008) Characterization of Ceramic Tiles Prepared from Two Clays from Sergipe-Brazil. Applied Clay Science, 39, 160-165. http://dx.doi.org/10.1016/j.clay.2007.05.004
[14] Celik, H. (2010) Technological Characterization and Industrial Application of Two Turkish Clays for the Ceramic Industry. Applied Clay Science, 50, 245-254. http://dx.doi.org/10.1016/j.clay.2010.08.005
[15] Kingery, W., Bowen, H. and Uhlmann, D. (1976) Introduction to Ceramics. John Wiley & Sons, New York.
[16] Durand Delga, M., Hottinger, L., Marcáis, J., Mattauer, M., Lilliard, Y. and Suter, G. (1960-1962) Livre à la mémoire du Professeur Paul Fallot consacré à l’évolution paléogéographique et structurale des domaines méditerranéens et alpins d’Europe. Vol. 1, Société géologique de France, Paris, 399-422.
[17] Wildi, W. (1983) La chaîne tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène. Revue de Géologie Dynamique et Géographie Physique, 24, 201-297.
[18] Aït Brahim, L. (1991) Tectonique cassante et états de contraintes récentes au nord du Maroc. Thèse de doctorat de l’Université Mohamed, 360.
[19] El Ouahabi, M., Daoudi, L. and Fagel, N. (2014) Preliminary Mineralogical and Geotechnical Characterization of Clays from Morocco: Application to Ceramic Industry. Clay Minerals, 49, 1-17.
[20] Lecloux, A.J. (1981) Texture of Catalysts. In: Anderson, J.R. and Boudart, M., Eds., Catalysis, Science and Technology, Vol. 2, Springer, Berlin, 171-230.
[21] Schollenberger, C.J. and Simon, R.H. (1945) Determination of Exchange Capacity and Exchangeable Bases in Soil-Ammonium Acetate Method. Soil Science, 59, 13-24.
[22] Mackenzie, R.C. (1952) A Micromethod for Determination of Cation Exchange Capacity of Clay. Clay Minerals Bulletin, 1, 203-204. http://dx.doi.org/10.1180/claymin.1952.001.7.03
[23] Vleeschouwer, F.D., Renson, V., Claeys, P., Nys, K. And Bindler, R. (2011) Quantitative WD-XRF Calibration for Small Ceramic Samples and Their Source Material. Geoarchaeology, 26, 440-450. http://dx.doi.org/10.1002/gea.20353
[24] Abajo, M. (2000) Manual sobre Fabricación de Baldosas. Tejas y Ladrillos. In: Beralmar, S.A., Ed., Barcelona.
[25] U. 67-027-84 (1984) Determinacion de la absorcion de agua de ladrillos de arcilla. Instituto Espanol de Normalizacion, AENOR.
[26] I. 10545-3 (1995) International Standard for Ceramic Tiles—Part 3. Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density. International Organization for Standardization.
[27] Ferrari, S. and Gualtieri, A.F. (2006) The Use of Illitic Clays in the Production of Stoneware Tile Ceramics. Applied Clay Science, 32, 73-81. http://dx.doi.org/10.1016/j.clay.2005.10.001
[28] Ravichandran, J. and Sivasankar, B. (1997) Properties and Catalytic Activity of Acid-Modified Montmorillonite and Vermiculite. Clays and Clay Minerals, 45, 854-858.
[29] Omotoso, O., Mikula, R.J. and Stephens, P.W. (2002) Surface Area of Interstratified Phyllosilicates in Athabasca oil Sands from Synchrotron XRD. Advances in X-Ray Analysis, 45, 363-391.
[30] Milheiro, F.A.C., Freire, M.N., Silva, A.G.P. and Holanda, J.N.F. (2005) Densification Behaviour of a Red Firing Brazilian Kaolinitic Clay. Ceramics International, 31, 757-763.
[31] Baccour, H., Medhioub, M., Jamoussi, F. and Mhiri, T. (2009) Influence of Firing Temperature on the Ceramic Properties of Triassic Clays from Tunisia. Journal of Materials Processing Technology, 209, 2812-2817. http://dx.doi.org/10.1016/j.jmatprotec.2008.06.055
[32] Yariv, S. (2004) The Role of Charcoal on DTA Curves of Organo-Clay Complexes: An Overview. Applied Clay Science, 24, 225-236. http://dx.doi.org/10.1016/j.clay.2003.04.002
[33] Stubna, I., Chmelík, F., Trník, A. and Sín, P. (2012) Acoustic Emission Study of Quartz Porcelain during Heating up to 1500℃. Ceramics International, 38, 6919-6922.
[34] Maitra, S., Choudhury, A., Das, H.S. and Pramanik, M. (2005) Effect of Compaction on the Kinetics of Thermal Decomposition of Dolomite under Non-Isothermal Condition. Journal of Materials Science, 40, 4749-4751. http://dx.doi.org/10.1007/s10853-005-0843-0
[35] Dondi, M., Fabbri, B. and Guarini, G. (1998) Grain-Size Distribution of Italian Raw Materials for Building Clay Products: A Reappraisal of the Winkler Diagram. Clay Minerals, 33, 435-442.
[36] Manning, D.A.C. (1995) Introduction to Industrial Minerals. Chapman & Hall, London.
[37] Correia, S.L., Curto, K.A.S., Hotza, D. and Segadães, A.M. (2004) Using Statistical Techniques to Model the Flexural Strength of Dried Triaxial Ceramic Bodies. Journal of the European Ceramic Society, 24, 2813-2818. http://dx.doi.org/10.1016/j.jeurceramsoc.2003.09.009
[38] Correia, S.L., Hotza, D. and Segadães, A.M. (2004) Simultaneous Optimization of Linear Firing Shrinkage and Water Absorption of Triaxial Ceramic Bodies Using Experiments Design. Ceramics International, 30, 917-922. http://dx.doi.org/10.1016/j.ceramint.2003.10.013
[39] Shepard, F.P. (1954) Nomenclature Based on Sand-Silt-Clay Ratios. Journal of Sedimentary Petrology, 24, 151-158.
[40] Monteiro, S.N. and Vieira, C.M.F. (2004) Influence of Firing Temperature on the Ceramic Properties of Clays from Campos dos Goytacazes, Brazil. Applied Clay Science, 27, 229-234.
[41] Mardare, C.C., Mardare, A.I., Fernandes, J.R.F., Joanni, E., Pina, S.C.A., Fernandes, M.H.V. and Correia, R.N. (2003) Deposition of Bioactive Glass-Ceramic Thin-Films by RF Magnetron Sputtering. Journal of the European Ceramic Society, 23, 1027-1030.
[42] Fiori, C., Fabbri, B., Donati, G. and Venturi, I. (1989) Mineralogical Composition of the Clay Bodies Used in the Italian Tile Industry. Applied Clay Science, 4, 461-473.
[43] Murray, H.H. (2007) Applied Clay Mineralogy, Vol. 2, Developments in Clay Science. Elsevier B.V., Amsterdam.
[44] Machado, A.T., Valenzuela-Diaz, F.R., de Souza, C.A.C. and de Andrade Lima, L.R.P. (2011) Structural Ceramics Made with Clay and Steel Dust Pollutants. Applied Clay Science, 51, 503-506.
[45] Saadi, M., Hilali, E.A. and Boudda, A. (1980) Carte Géologique de la chaîne Rifaine—Echelle 1:500.000. Ministere de l’Energie et des Mines, Direction de Géologie, Service de Géologie du Maroc. Notes et Mémoires, No. 245.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.