Synthesis, Characterization of Cellulose Grafted N-Oxide Reagent and Its Application in Oxidation of Alkyl/Aryl Halides
Inderjeet Kaur, Poonam K. Dhiman
.
DOI: 10.4236/ijoc.2011.11002   PDF    HTML     6,988 Downloads   14,659 Views   Citations

Abstract

Oxidation of aliphatic and aromatic halides by N-oxide functionalities supported on 4- vinyl pyridine, (4-VP), grafted cellulose is reported in the present manuscript. Synthesis of graft copolymer of cellulose and poly 4-vinyl pyridine, poly(4-VP), has been carried out using ceric ions as redox initiator. Post-grafting treatment of CellO-g-poly (4-VP) with 30% H2O2 in acetic acid gives Cellulose-g-poly (4-VP) N-oxide, the polymeric supported oxidizing reagent. The polymeric support, CellO-g-poly (4-VP) N-oxide, has been used for oxidation reactions of different alkyl / aryl halide such as 1-bromo-3-methyl butane, 2-bromo propane,1-bromo heptane and benzyl chloride. The polymeric reagent was characterized by IR and thermo-gravimetric analysis. The oxidized products were characterized by FTIR and H1NMR spectral methods. The reagent was reused for the oxidation of a fresh alkyl / aryl halides and it was observed that the polymeric reagent oxidizes the compounds successfully but with little lower product yield.

Share and Cite:

I. Kaur and P. Dhiman, "Synthesis, Characterization of Cellulose Grafted N-Oxide Reagent and Its Application in Oxidation of Alkyl/Aryl Halides," International Journal of Organic Chemistry, Vol. 1 No. 1, 2011, pp. 6-14. doi: 10.4236/ijoc.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. M. Whitesides and G. S. Ferguson, “Organic Chemistry in Two Dimensions: Surface-Functionalized Polymers and Self-Assembled Monolayer Films,” Chemtracts Organic Chemistry, Vol. 1, 1988, pp. 171-187.
[2] P. L. Anelli, S. Banfi, F. Montanari and S. Quici, “Oxidation of Diols with Alkali Hypochlorites Catalyzed by Oxammonium Salts under Two-Phase Conditions,” Journal of Organic Chemistry, Vol. 54, No. 12, 1989, pp. 2970-2972. doi:10.1021/jo00273a038
[3] A. de Mico, R. Margarita, L. Parlanti, A. Vescovi and G. Piancatelli, “A Versatile and Highly Selective Hypervalent Iodine (III)/2,2,6,6-Tetramethyl-1-Piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds,” Journal of Organic Chemistry, Vol. 62, No. 20, 1997, pp. 6974-6977. doi:10.1021/jo971046m
[4] L. de Luca, G. Giacomelli, S. Masala and A. Porcheddu, “Trichloroisocyanuric/TEMPO Oxidation of Alcohols under Mild Conditions: A Close Investigation,” Journal of Organi Chemistry, Vol. 68, No. 12, 2003, pp. 4999-5001. doi:10.1021/jo034276b
[5] C. Bolm, A. S. Magnus and J. P. Hildebrand, “Catalytic Synthesis of Aldehydes and Ketones under Mild Conditions Using TEMPO/Oxone,” Organic Letters, Vol. 2, No. 8, 2000, pp. 1173-1175. doi:10.1021/ol005792g
[6] R. A. Miller and R. S. Hoerrner, “Iodine as a Chemoselective Reoxidant of TEMPO: Application to the Oxidation of Alcohols to Aldehydes and Ketones,” Organic Letters, Vol. 5, No. 3, 2003, pp. 285-287. doi:10.1021/ol0272444
[7] P. L. Anelli, F. Montanari and S. Quici, “A General Synthetic Method for the Oxidation of Primary Alcohols to Aldehydes,” Organic Syntheses, Vol. 69, 1990, pp. 212-219.
[8] T. Fey, H. Fischer, S. Bachmann, K. Albert and C. Bolm, “Synthesis, Characterization and HPLC-Applications of Novel Phthalocyanine Modified Silica Gel Materials,” Journal of Organic Chemistry, Vol. 66, pp. 8154-8159. doi:10.1021/jo010535q
[9] A. Dijksman, I. W. C. E. Arends and R. A. Sheldon, “Polymer Immobilised TEMPO (PIPO): An Efficient Catalyst for the Chlorinated Hydrocarbon Solvent-free and Bromide-free Oxidation of Alcohols with Hypochlorite,” Chemical Communications, Vol. 2000, No. 4, 2000, pp. 271-272. doi:10.1039/a909690f
[10] R. Ciriminna, C. Bolm, T. Fey and M. Pagliaro, “Sol-Gel Ormosils Doped with TEMPO as Recyclable Catalysts for the Selective Oxidation of Alcohols,” Advanced Synthesis & Catalysis, Vol. 344, 2002, pp. 159-163. doi:10.1002/1615-4169(200202)344:2<159::AID-ADSC159>3.0.CO;2-Q
[11] K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani and K. Kaneda, “Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation,” Journal of the American Chemical Society, Vol. 122, 2000, pp. 7144-7145. doi:10.1021/ja001325i
[12] G. Pozzi, M. Cavazzini, S. Quici, M. Benaglia and G. Dell’Anna, “Poly(Ethylene Glycol)-Supported TEMPO: An Efficient, Recoverable Metal-Free Catalyst for the Selective Oxidation of Alcohols,” Organic Letters, Vol. 6, No. 3, 2004, pp. 441-443. doi:10.1021/ol036398w
[13] T. Miyazawa and T. Endo, “Oxidation of Benzyl Alcohol with Fe(III) Using Polymers Containing the Nitroxyl Radical Structure as a Mediator,” Journal of Polymer Science: Polymer Chemistry Edition, Vol. 23, No. 9, 1985, pp. 2487-2494. doi:10.1002/pol.1985.170230913
[14] N. E. Leadbeater and K. A. Scott, “Preparation of a Resin-Bound Cobalt Phosphine Complex and Assessment of Its Use in Catalytic Oxidation and Acid Anhydride Synthesis,” Journal of Organic Chemistry, Vol. 65, No. 15, 2000, pp. 4770-4772. doi:10.1021/jo0003293
[15] A. Gopinathan, N. Hisanori and K. Yasuyuki, “A Simple and Efficient Iodination of Alcohols on Polymer-Supported Triphenylphosphine,” Organic Process Research & Development, Vol. 6, No. 2, 2002, pp. 190-191.
[16] J. Chen, K. S. Scott, G. H. Janathan, D. H. John, P. S. Richard and D. R. Robin, “Application of Poly(ethylene glycol)-Based Aqueous Biphasic Systems as Reaction and Reactive Extraction Media,” Industrial & Engineering Chemistry Research, Vol. 43, No. 17, 2004, pp. 5358-5364. doi:10.1021/ie0341496
[17] V. A. Nair, S. M. Mustafa and S. Krishnapillai, “Polystyrene Supported Manganese Complexes: Heterogeneous Catalysts for Oxidation Reactions,” Journal of Polymer Research, Vol. 10, No. 4, 2003, pp. 267-273.
[18] T. Wirth, “Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis (Series: Topics in Current Chemistry),” 1st Edition, Springer, 2003.
[19] Z. Lei, C. Denecker, S. Jegasothy, D. C. Sherrington, N. K. H. Slater and A. J. Sutherland, “A Facile Route to a Polymer-Supported IBX Reagent,” Tetrahedron Letters, Vol. 44, No. 8, 2003, pp. 1635-1637. doi:10.1016/S0040-4039(03)00041-8
[20] T. Zollner, P. Gebhardt, R. Beckert and C. Hertweck, “Efficient Synthesis of 9- and 13-Oxo Leucomycin Derivatives Using Hypervalent Iodine Reagents in Solution and on Solid Support,” Journal of Natural Products, Vol. 68, No. 1, 2005, pp. 112-114. doi:10.1021/np049728+
[21] M. Mulbaier and A. Giannis, “Synthesis of (R)-(-)- phenylpiperidin-1-yl-acetic Acid and Its Utilization for the Synthesis of (R)-(-)-Bietamiverine and (R)-(-)- dipiproverine,” Arkivoc, Part 6, 2003, pp. 56-60.
[22] Y. Kurimura, E. Tsuchida and M. Kaneko, “Preparation and Properties of Some Water Soluble Co(III)-poly-4-vinylpyridine Complexes,” Journal of Polymer Science A - I, Vol. 9, No. 12, 1971, pp. 3511-3519.
[23] H. G. Biedermann, E. Griessl and K. Wichmann, “Metallkomplexe Mit Polymeren Liganden, 3?. übergan- gsmetallkomplexe Mit Poly(2-pyridylthylen) [Poly(2-vinylpyridine)],” Die Makromolekulare Chemie, Vol. 172, No. 1, 1973, pp. 49-55. doi:10.1002/macp.1973.021720104
[24] K. P. Dhiman, R. K. Mahajan and I. Kaur, “Synthesis of a Cellulose-Grafted Polymeric Support and Its Application in the Reductions of Some Carbonyl Compounds,” Journal of Applied Polymer Science, Vol. 108, No. 1, 2008, pp. 99-111. doi:10.1002/app.27423
[25] M. Zupan, B. ?ket and Y. Johar, “Synthesis and Properties of Cross-Linked 4-Vinylpyridine-Styrene-Halogen Complexes,” Journal of Macromolecular Science, Part A: Chemistry, Vol. 17, No. 5, 1982, pp. 759-769.
[26] M. S. Baines, “Inorganic Redox Systems in Graft Polymerization onto Cellulosic Materials,” Journal of Polymer Science, Part C: Polymer Symposia, Vol. 37, No. 1, 1972, pp. 125-151.
[27] A. P. Johnson and A. Pelter, “The Direct Oxidation of Aliphatic Iodides to Carbonyl Compounds,” Journal of the Chemical Society, 1964, pp. 520-522. See also: N. Kornblum, W. J. Jones and G. J. Anderson, “A New and Selective Method of Oxidation. The Conversion of Alkyl Halides and Alkyl Tosylates to Aldehydes,” Journal of the American Chemical Society, Vol. 81, 1959, pp. 4113-4114.
[28] B. Ganem and R. K. Jr. Boeckman, “Silver-assisted Dimethylsulfoxide Oxidations; An Improved Synthesis of Aldehydes and Ketones,” Tetrahedron Letters, Vol. 15, No. 11, 1974, pp. 917-920. doi:10.1016/S0040-4039(01)82368-6
[29] V. Franzen, “Octanal,” Organic Syntheses, Coll., Vol. 5, 1973, pp. 872-874. V. Franzen and S. Otto, “Eine neue Methode zur Darstellung von Carbonylverbindungen,” Chemische Berichte, Vol. 94, No. 5, 1961, pp. 1360-1363. doi:10.1002/cber.19610940530
[30] J. M. J. Fréchet, P. Darling and M. J. Farrall, “Polymeric Reagents V. Preparation of a New Recyclable Polymeric Oxidizing Agent for the Oxidation of Halides and Tosylates into Carbonyl Compounds,” Polymer Preprints, Vol. 21, No. 2, 1980, pp. 270-272.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.