UV Index Modeling by Autoregressive Distributed Lag (ADL Model)


The objective of this work is to model statistically the ultraviolet radiation index (UV Index) to make forecast (extrapolate) and analyze trends. The task is relevant, due to increased UV flux and high rate of cases non-melanoma skin cancer in northeast of Brazil. The methodology utilized an Autoregressive Distributed Lag model (ADL) or Dynamic Linear Regression model. The monthly data of UV index were measured in east coast of the Brazilian Northeast (City of Natal-Rio Grande do Norte). The Total Ozone is single explanatory variable to model and was obtained from the TOMS and OMI/AURA instruments. The Predictive Mean Matching (PMM) method was used to complete the missing data of UV Index. The results mean squared error (MSE) between the observed UV index and interpolated data by model was of 0.36 and for extrapolation was of 0.30 with correlations of 0.90 and 0.91 respectively. The forecast/extrapolation performed by model for a climatological period (2012-2042) indicated a trend of increased UV (Seasonal Man-Kendall test scored τ = 0.955 and p-value < 0.001) if the Total Ozone remain on this tendency to reduce. In those circumstances, the model indicated an increase of almost one unit of UV index to year 2042.

Share and Cite:

Lopo, A. , Spyrides, M. , Lucio, P. and Sigró, J. (2014) UV Index Modeling by Autoregressive Distributed Lag (ADL Model). Atmospheric and Climate Sciences, 4, 323-333. doi: 10.4236/acs.2014.42033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] World Health Organization and International Commission on Non-Ionizing Radiation Protection (2002) Global Solar UV Index: A Practical Guide.
[2] WMO, World Meteorological Organization (1998) Report of the WMO-WHO Meeting of Experts on Standardization of UV Indices and Their Dissemination to the Public.
[3] Lee-Taylor, J. and Madronich, S. (2007) Climatology of UV-A, UV-B, and Erythemal Radiation at the Earth’s Surface, 1979-2000. National Center for Atmospheric Research, Boulder.
[4] Borkowski, J.L. (2008) Modelling of UV Radiation Variations at Different Time Scales. Annales Geophysicae, 26, 441-446. http://dx.doi.org/10.5194/angeo-26-441-2008
[5] Watanabe, S., Takemura, T., Sudo, K., Yokohata, T. and Kawase, H. (2012) Anthropogenic Changes in the Surface All-Sky UV-B Radiation through 1850-2005 Simulated by an Earth System Model. Atmospheric Chemistry and Physics, 12, 5249-5257. http://dx.doi.org/10.5194/acp-12-5249-2012
[6] Leal, S.S., Tíba, C. and Piacentini, R. (2011) Daily UV Radiation Modeling with the Usage of Statistical Correlations and Artificial Neural Networks. Renewable Energy, 36, 3337-3344.
[7] Costa, S.S., Rodrigues, M., Ceballos, J. and Corrêa, M.P. (2010) índices de Radia??o Ultravioleta: Estudo Comparativo entre Modelo de Transferência Radiativa e Observa??es à Superfície. Proceedings of the 16th Brazilian Congress of Meteorology, Belém, 13-17 September 2010.
[8] Corrêa, M.P. and Plana-Fattori, A. (2006) Uma análise das variacoes do índice ultravioleta em relacao às observacoes de conteúdo de ozonio e da espessura óptica dos aerossóis sobre a cidade de Sao Paulo. Revista Brasileira de Meteorologia, 21, 24-32.
[9] De Backer, H., Koepke, P., Bais, A., de Cabo, X., Frei, T., Gillotay, D. and Vanicek, K. (2001) Comparison of Measured and Modelled UV Indices for the Assessment of Health Risks. Meteorological Applications, 8, 267-277. http://dx.doi.org/10.1017/S1350482701003024
[10] Fioletov, V.E., Kerr, J. and Wardle, D.I. (1997) The Relationship between Total Ozone Column and Spectral UV Irradiance from Brewer Observations and Its Use for Derivation of Total Ozone Column from UV Measurements. Geophysical Research Letters, 24, 2997-3000.
[11] Zerefos, C. (1997) Factors Influencing the Transmission of Solar Ultraviolet Irradiance through the Earth’s Atmosphere. In: Solar Ultraviolet Radiation, Springer, Berlin, 133-141.
[12] Vanicek, K., Frei, T., Litynska, Z. and Schmalwieser, A. (2000) UV-Index for the Public. Publication of the European Communities, Brussels.
[13] Pankratz, A. (2012) Forecasting with Dynamic Regression Models. Vol. 935, John Wiley & Sons, Hoboken.
[14] Kiviet, J.F. and Dufour, J.M. (1997) Exact Tests in Single Equation Autoregressive Distributed Lag Models. Journal of Econometrics, 80, 325-353. http://dx.doi.org/10.1016/S0304-4076(97)00048-1
[15] Ravines, R.R., Schmidt, A.M. and Migon, H.S. (2006) Revisiting Distributed Lag Models through a Bayesian Perspective. Applied Stochastic Models in Business and Industry, 22, 193-210.
[16] Diniz, C.A.R., Rodrigues, C.P., Leite, J.G. and Pires, R.M. (2014) A Bayesian Estimation of Lag Lengths in Distributed Lag Models. Journal of Statistical Computation and Simulation, 84, 415-427.
[17] Buss, G. (2009) Economic Forecasts with Bayesian Autoregressive Distributed Lag Model: Choosing Optimal Prior in Economic Downturn. http://epp.eurostat.ec.europa.eu/cache/ITY_PUBLIC/EWP-2011-006/EN/EWP-2011-006-EN.PDF
[18] Madronich, S., McKenzie, R.L., Bj?rn, L.O. and Caldwell, M.M. (1998) Changes in Biologically Active Ultraviolet Radiation Reaching the Earth’s Surface. Journal of Photochemistry and Photobiology B: Biology, 46, 5-19. http://dx.doi.org/10.1016/S1011-1344(98)00182-1
[19] Herman, J.R. (2010) Global Increase in UV Irradiance during the Past 30 Years (1979-2008) Estimated from Satellite Data. Journal of Geophysical Research: Atmospheres (1984-2012), 115, Article ID: D04203. http://dx.doi.org/10.1029/2009JD012219
[20] Herman, J.R., Labow, G., Hsu, N.C. and Larko, D. (2009) Changes in Cloud and Aerosol Cover (1980-2006) from Reflectivity Time Series Using SeaWiFS, N7-TOMS, EP-TOMS, SBUV-2, and OMI Radiance Data. Journal of Geophysical Research: Atmospheres (1984-2012), 114.
[21] Fahey, D.W. and Hegglin, M.I. (2011) Twenty Questions and Answers about the Ozone Layer: 2010 Update. Scientific Assessment of Ozone Depletion, World Meteorological Organization, Geneva, 72 p.
[22] Hegglin, M.I. and Shepherd, T.G. (2009) Large Climate-Induced Changes in Ultraviolet Index and Stratosphere-toTroposphere Ozone Flux. Nature Geoscience, 2, 687-691.
[23] World Meteorological Organization (2011) Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research and Monitoring Project-Report No. 52, 516 p, World Meteorological Organization, Geneva.
[24] Instituto Brasileiro de Geografia e Estatística (2013) BRASIL, IBGE, Estimativa Populacional 2013, Instituto Brasileiro de Geografia e Estatística, 2013. http://www.ibge.gov.br/
[25] Furtado, E.M. (2005) A onda do turismo na cidade do sol: A reconfiguracao urbana de Natal. Dissertacao, UFRN, Natal, Brasil.
[26] Instituto Nacional de Meteorologia-INMET (2009) Normais Climatológicas do Brasil 1961-1990. Brasília.
[27] Instituto Nacional de Cancer-INCA (2011) Estimativa 2012-Incidência de Cancer no Brasil, Ministério da Saúde do Brasil.
[28] Lopo, A.B., Spyrides, M.H.C., Lucio, P.S. and Sigró, J. (2013) Ozone and Aerosol Influence on Ultraviolet Radiation on the East Coast of the Brazilian Northeast. Atmospheric and Climate Sciences, 4, 92-99. http://dx.doi.org/10.4236/acs.2014.41012
[29] Da Silva, F.R. (2008) Estudo da radiacao ultravioleta na cidade de Natal-RN. Doctoral Dissertation, Universidade Federal do Rio Grande do Norte.
[30] McKinlay, A.F. and Diffey, B.L. (1987) A Reference Action Spectrum for Ultraviolet Induced Erythema in Human Skin. CIE Journal, 6, 17-22.
[31] Biospherical Instruments (2013) Application Note: GUV Diffey Dose Calculations.
[32] Bramstedt, K., Gleason, J., Loyola, D., Thomas, W., Bracher, A., Weber, M. and Burrows, J.P. (2003) Comparison of Total Ozone from the Satellite Instruments GOME and TOMS with Measurements from the Dobson network 19962000. Atmospheric Chemistry and Physics, 3, 1409-1419.
[33] Team O.M.I. (2013) Ozone Monitoring Instrument (OMI) Data User’s Guide.
[34] Rubin, D.B. (2009) Multiple Imputation for Nonresponse in Surveys. Vol. 307, John Wiley & Sons, Hoboken.
[35] Rubin, D.B. and Little, R.J. (2002) Statistical Analysis with Missing Data. John Wiley & Sons, Hoboken.
[36] van Buuren, S. and Groothuis-Oudshoorn, K. (2011) Mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45.
[37] Horton, N.J. and Kleinman, K.P. (2007) Much Ado about Nothing. The American Statistician, 61, 79-90. http://dx.doi.org/10.1198/000313007X172556
[38] Di Zio, M. and Guarnera, U. (2009) Semiparametric Predictive Mean Matching. AStA Advances in Statistical Analysis, 93, 175-186. http://dx.doi.org/10.1007/s10182-008-0081-2
[39] Li, K.H., Raghunathan, T.E. and Rubin, D.B. (1991) Large-Sample Significance Levels from Multiply Imputed Data Using Moment-Based Statistics and an F Reference Distribution. Journal of the American Statistical Association, 86, 1065-1073. http://dx.doi.org/10.1080/01621459.1991.1047 5152
[40] Schafer, J.L. (1997) Analysis of Incomplete Multivariate Data. CRC Press, Boca Raton.
[41] Durrant, G.B. (2005) Imputation Methods for Handling Item-Nonresponse in the Social Sciences: A Methodological Review. ESRC National Centre for Research Methods and Southampton Statistical Sciences Research Institute. NCRM Methods Review Papers NCRM/002.
[42] Vink, G., Frank, L.E., Pannekoek, J. and Buuren, S. (2014) Predictive Mean Matching Imputation of Semicontinuous Variables. Statistica Neerlandica, 68, 61-90. http://dx.doi.org/10.1111/stan.12023
[43] Horton, N.J. and Lipsitz, S.R. (2001) Multiple Imputation in Practice: Comparison of Software Packages for Regression Models with Missing Variables. The American Statistician, 55, 244-254. http://dx.doi.org/10.1198/000313001317098266
[44] Kenward, M.G. and Carpenter, J. (2007) Multiple Imputation: Current Perspectives. Statistical Methods in Medical Research, 16, 199-218. http://dx.doi.org/10.1177/0962280206075304
[45] Landerman, L.R., Land, K.C. and Pieper, C.F. (1997) An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values. Sociological Methods & Research, 26, 3-33. http://dx.doi.org/10.1177/0049124197026001001
[46] Okamoto, M. (2006) Bias-Reduced Multivariate Computation: Use of the Locally-Adjusted Predictive Mean Matching Method. http://www.amstat.org/sections/srms/proceedings/y2006/Files/JSM2006-000044.pdf
[47] Makridakis, S., Wheelwright, S.C. and Hyndman, R.J. (1998) Forecasting: Methods and Applications. 3rd Edition, Wiley, New York.
[48] Song, H., Witt, S.F. and Jensen, T.C. (2003) Tourism Forecasting: Accuracy of Alternative Econometric Models. International Journal of Forecasting, 19, 123-141. http://dx.doi.org/10.1016/S0169-2070 (01)00134-0
[49] Faraway, J.J. (2004) Linear Models with R. CRC Press, Boca Raton.
[50] Seber, G.A. and Lee, A.J. (2012) Linear Regression Analysis. Vol. 936, John Wiley & Sons, Hoboken.
[51] Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression. Chapman and Hall.
[52] Verzani, J. (2004) Using R for Introductory Statistics. CRC Press, Boca Raton.
[53] Breusch, T.S. and Pagan, A.R. (1979) A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica: Journal of the Econometric Society, 47, 1287-1294.
[54] Conover, W.J., Johnson, M.E. and Johnson, M.M. (1981) A Comparative Study of Tests for Homogeneity of Variances, with Applications to the Outer Continental Shelf Bidding Data. Technometrics, 23, 351-361. http://dx.doi.org/10.1080/00401706.1981.10487680
[55] Neter, J., Kutner, M., Nachtssheim, C.J. and Wasserman, W. (1996) Applied Linear Statistical Models. 4th Edition, WCB/McGraw-Hill, Boston, 791 p.
[56] Kutner, M.H. (1996) Applied Linear Statistical Models. Vol. 4, Irwin, Chicago.
[57] Helleseth, T. (1976) Some Results about the Cross-Correlation Function between Two Maximal Linear Sequences. Discrete Mathematics, 16, 209-232. http://dx.doi.org/10.1016/0012-365X(76)90100-X
[58] Shumway, R.H., Stoffer, D.S. and Stoffer, D.S. (2000) Time Series Analysis and Its Applications. Vol. 3, Springer, New York. http://dx.doi.org/10.1007/978-1-4757-3261-0
[59] Box, G.E. and Pierce, D.A. (1970) Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association, 65, 1509-1526. http://dx.doi.org/10.1080/01621459.1970.10481180
[60] Durbin, J. and Watson, G.S. (1950) Testing for Serial Correlation in Least Squares Regression. I. Biometrika, 37, 409-428. http://dx.doi.org/10.1093/biomet/37.3-4.409
[61] Durbin, J. and Watson, G.S. (1951) Testing for Serial Correlation in Least Squares Regression. II. Biometrika, 38, 159-177.
[62] R Development Core Team. R (2005) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
[63] Crawley, M.J. (2005) Statistics: An Introduction Using R. Wiley, New York, 342 p.
[64] Zeileis, A. (2009) Dynlm: Dynamic Linear Regression. R Package Version 0.2-3. http://CRAN.R-project.org/package= dynlm
[65] Mann, H.B. (1945) Non-Parametric Test against Trend. Econometrica, 13, 245-259.
[66] Kendall, M.G. (1975) Rank Correlation Methods. Charles Griffin, London, 120 p.
[67] Oliveira, P.T., Lima, K.C. and Silva, S. (2013) Synoptic Environment Associated with Heavy Rainfall Events on the Coastland of Northeast Brazil. Advances in Geosciences, 35, 73-78.
[68] dos Santos, D.N., de PR da Silva, V., de AS Sousa, F. and Silva, R.A. (2010) Estudo de alguns cenários climáticos para o Nordeste do Brasil. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi, 14. http://dx.doi.org/10.1590/S1415-43662010000500006
[69] Hirsch, R.M., Slack, J.R. and Smith, R.A. (1982) Techniques of Trend Analysis for Monthly Water Quality Data. Water Resources Research, 18, 107-121. http://dx.doi.org/10.1029/WR018i001p00107
[70] McLeod, A.I. (2005) Kendall Rank Correlation and Mann-Kendall Trend Test. R Package “Kendall”. http://www.stats.uwo.ca/faculty/aim
[71] Belle, G. and Hughes, J.P. (1984) Nonparametric Tests for Trend in Water Quality. Water Resources Research, 20, 127-136. http://dx.doi.org/10.1029/WR020i001p00127

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.