Climate Change in La Plata Basin as Seen by a High-Resolution Global Model


This paper analyses the climate change in La Plata Basin, one of the most important regions in South America due to its economy and population. For this work it has been used the Meteorological Research Institute (MRI) and the Japanese Meteorological Agency (JMA) atmospheric global model. For both near and far future, the projected changes for temperature over the entire basin were positive, although they were only statistically significant at the end of the XXI century. Changes in the annual cycle of mean temperature were also positive in all subregions of the basin. Regarding precipitation, there were no changes in the near future that were statistically significant. The summer (winter) is the only season where both models project positive (negative) changes for both periods of the future. In the transitional seasons these changes vary depending on the spatial resolution model and the area of study. The annual cycle showed that the largest changes in precipitation (positive or negative) coincide with the rainy season of each subregion. Regarding the interannual variability of temperature, it was found that the 20 km. model pro-jected a decrease of this variability for both near and far future, especially in summer and autumn. On the other hand, the 60 km. ensemble model showed a decreased of year-to-year variability for summer and an increase in winter and spring. It was also found that both models project an increase in precipitation variability for winter and summer, while in other seasons, only the 60 km. ensemble model presents the mentioned behavior.

Share and Cite:

Nuñez, M. and Blázquez, J. (2014) Climate Change in La Plata Basin as Seen by a High-Resolution Global Model. Atmospheric and Climate Sciences, 4, 272-289. doi: 10.4236/acs.2014.42029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bidegain, M. and Camilloni, I. (2002) Regional Climate Baselines Scenarios for the Rio de la Plata Basin. AIACC Workshop on Climate Change and La Plata River, Montevideo, November 2002, 11 p.
[2] Silvestri, G., Vera, C., Jacob, D., Pfeifer, S. and Teichmann, C. (2008) A High-Resolution 43-Year Atmospheric Hindcast for South America Generated with the MPI Regional Mode. Climate Dynamics, 32, 693-709.
[3] Samuelson, P., Solman, S., Sanchez, E., Rocha, R., Li, L., Marengo, J., Remedio, A. and Berbery, H. (2013) Regional Climate Change Projections over South America Based on the CLARIS-LPB RCM Ensemble. Geophysical Research Abstracts, 15, EGU2013-5800.
[4] Solman, S.A., Sánchez, E., Samuelsson, P., da Rocha, R.P., Li, L., Marengo, J., Pessacg, N., Remedio, A.R.C., Chou, S.C., Berbery, H., Le Treut, H., de Castro, M. and Jacob, D. (2013) Evaluation of an Ensemble of Regional Climate Model Simulations over South America Driven by the ERA-Interim Reanalysis: Model Performance and Uncertainties. Climate Dynamics, 41, 1139-1157.
[5] Blázquez, J., Nunez, M.N. and Kusunoki, S. (2012) Climate Projections and Uncertainties over South America from MRI/JMA Global Model Experiments. Atmospheric and Climate Sciences, 2, 381-400.
[6] Marengo, J.A., Chou, S.C., Kay, G., Alves, L.M., Pesquero, J.F., Soares, W.R., Santos, D.C., Lyra, A.A., Sueiro, G., Betts, R., Chagas, D.J., Gomes, J.L., Bustamante, J.F. and Tavares, P. (2012) Development of Regional Future Climate Change Scenarios in South America Using the Eta CPTEC/HadCM3 Climate Change Projections: Climatology and Regional Analyses for the Amazon, Sao Francisco and the Parana River Basins. Climate Dynamics, 38, 1829-1848.
[7] Cabré, M.F., Solman, S. and Nunez, M.N. (2010) Creating Regional Climate Change Scenarios over Southern South America for the 2020’s and 2050’s Using the Pattern Caling Technique: Validity and Limitations. Climatic Change, 98, 449-469.
[8] Nunez, M.N., Solman, S.A. and Cabré, M.F. (2009) Regional Climate Change Experiments over Southern South America. II: Climate Change Scenarios in the Late Twenty-First Century. Climate Dynamics, 32, 1081-1095.
[9] Castaneda, M.E. and Barros, V. (1994) Las tendencias de la precipitación en el Cono sur de América al Este de los Andes. Meteorológica, 19, 23-32.
[10] Minetti, J., Vargas, W., Poblete, A., Acuna, L. and Casagrande, G. (2003) Non-Linear Trends and Low Frequency Oscillations in Annual Precipitation over Argentina and Chile, 1931-1999. Atmósfera, 16, 119-135.
[11] Barros, V. (2006) Introducción. Capítulo I. In: Barros, V., Clarke, R. and Silva Días, P., Eds., El Cambio Climático en la Cuenca del Plata, CIMA, Buenos Aires, 230 p.
[12] García, N. and Vargas, W. (1998) The Temporal Climatic Variability in the Rio De La Plata Basin Displayed by the River Discharges. Climatic Change, 38, 359-379.
[13] Genta, J.L., Perez Iribarne, G. and Mechoso, C. (1998) A Recent Increasing Trend in the Streamflow of Rivers in Southeastern South America. Journal of Climate, 11, 2858-2862.<2858:ARITIT>2.0.CO;2
[14] Camilloni, I. (2005) Variabilidad y tendencias hidrológicas en la Cuenca del Plata. Capítulo 3. In: Barros, V., Menéndez, A. and Nagy, G., Eds., El Cambio Climático en el Río de la Plata, CIMA, Buenos Aires, 200 p.
[15] Berbery,E.H.and Barros,V.R.(2002) The Hydrologic Cycle of the La Plata Basin in South America.Journal of Hydrometeorology,3,630-645.< 0630:THCOTL>2.0.CO;2
[16] Baéz, J. (2006) Tendencias en la evaporación. Capítulo VII. In: Barros, V., Clarke, R. and Silva Días, P., Eds., El Cambio Climático en la Cuenca del Plata, CIMA, Buenos Aires, 230 p.
[17] Collischonn, W., Tucci, C.E.M. and Clarke, R.T. (2001) Further Evidence of Changes in the Hydrological Regime of the River Paraguay: Part of a Wider Phenomenon of Climate Change? Journal of Hydrology, 245, 218-238.
[18] Blázquez, J. and Nunez, M.N. (2013) Performance of a High Resolution Global Model over Southern South America”,International Journal of Climatology,33, 904-919.
[19] Blázquez, J. (2012) Proyecciones climáticas sobre Sudamérica utilizando modelos climáticos globales. Análisis de incertidumbres (Climate projections over South America Using Global Climate Models. Analysis of Uncertainties). Ph.D. Dissertation, University of Buenos Aires. Download/Tesis/Tesis_5093_Blazquez.pdf
[20] Mellor,G.L. and Yamada,T. (1974) A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers.Journal of the Atmospheric Sciences,31,1791-1806.<1791:AHOTCM>2.0.CO;2
[21] Mellor, G.L. and Yamada, T. (1982) Development of a Turbulence Closure Model for Geophysical Fluid Problems. Reviews of Geophysics, 20, 851-875.
[22] Sato, N., Sellers, P.J., Randall, D.A., Schneider, E.K., Shukla, J., Kinter III, J.L. Hou, Y.T. and Albertazzi, E. (1989) Implementing the Simple Biosphere Model in a General Circulation Model: Methodologies and Results. NASA Contractor Report, Center for Land-Ocean-Atmosphere Interactions, University of Maryland at College Park, 185509, 76 p.
[23] Sato, N., Sellers, P.J., Randall, D.A., Schneider, E.K., Shukla, J., Kinter III, J.L., Hou, Y.T. and Albertazzi, E. (1989) Effects of Implementing the Simple Biosphere Model in a General Circulation Model. Journal of the Atmospheric Sciences,46,2757-2782.<2757: EOITSB>2.0.CO;2.
[24] Mizuta, R., Oouchi, K., Yoshimura, H., Noda, A., Katayama, K., Yukimoto, S., Hosaka, M., Kusunoki, S., Kawai H. and Nakagawa, M. (2006) 20-KM-Mesh Global Climate Simulations Using JMA-GSM Model. Journal of the Meteorological Society of Japan, 84, 165-185.
[25] Nakicenovic, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T.Y., Kram, T., Lebre La Rovere, E., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., Van Rooijen, S., Victor, N. and Dadi, Z. (2000) Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, 599.
[26] Hawkins, E. and Sutton, R. (2009) The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90, 1095-1107.
[27] Hawkins, E. and Sutton, R. (2011) The Potential to Narrow Uncertainty in Projections of Regional Precipitation Change. Climate Dynamics, 37, 407-418.
[28] Meehl, G.A., Covey, C., Taylor, K.E., Delworth, T., Stouffer, R.J., Latif, M., McAvaney, B. and Mitchell, J.F.B. (2007) THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of American Meteorological Society, 88, 1383-1394.
[29] Kitoh, A., Kusunoki, S. and Nakaegawa, T. (2011) Change Projections over South America in the Late 21st Century with the 20 and 60 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM). Journal of Geophysical Research, 116, Article ID: D06105.
[30] Saurral, R.I. (2010) The Hydrologic Cycle of the La Plata Basin in the WCRP-CMIP3 Multimodel Dataset. Journal of Hydrometeorology, 11, 1083-1102.
[31] Vera, C., Silvestri, G., Liebmann, B. and Gonzalez, P. (2006) Climate Change Scenarios for Seasonal Precipitation in South America from IPCC-AR4 Models. Geophysical Research Letters, 33, Article ID: L13707.
[32] Aceituno, P. (1988) On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate. Monthly Weather Review, 116, 505-524. (1988)116<0505:OTFOTS>2.0.CO;2
[33] Grimm, A.M., Barros, V. and Doyle, M. (2000) Climate Variability in Southern South America Associated with El Nino and La Nina Events. Journal of Climate, 13, 35-58.<0035:CVISSA>2.0.CO;2
[34] Barros, V. and Silvestri, G.E. (2002) The Relation between Sea Surface Temperature at the Subtropical South-Central Pacific and Precipitation in Southeastern South America. Journal of Climate, 15, 251-267.<0251:TRBSST>2.0.CO;2
[35] Blázquez, J. and Nunez, M.N. (2013) Analysis of Uncertainties in Future Climate Projections for South America: Comparison of WCRP-CMIP3 and WCRP-CMIP5 Models. Climate Dynamics, 41, 1039-1056.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.