A High Matrix Tolerance Cadmium Determination Method: An Analysis Method Combining Microextraction and Laser Ablation Inductively Coupled Plasma Mass Spectrometry


Herein, we proposed a high matrix tolerance analytical method, using a combination of ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone (APDC-MIBK) microextraction and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), for Cd concentration determination in aqueous samples. Only 200 μL of organic solvent was used throughout the entire analysis process, with enhancement factors as high as 25. Recoveries from replicate analyses of natural water [ NIST 1 640(a)] c ontaining m ean c oncentrations o f 3 .1 μ g C d L –1 were 95 ± 3. The corresponding Cd detection limit was 0.6 μg L–1. The main advantage of this approach is its simplicity in terms of sample preparation, as demonstrated by quantifying the Cd levels in tap water, groundwater, and seawater, using a standard addition method.

Share and Cite:

Wang, C. , Wang, T. , Sung, Y. and Hsieh, Y. (2014) A High Matrix Tolerance Cadmium Determination Method: An Analysis Method Combining Microextraction and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Geoscience and Environment Protection, 2, 89-95. doi: 10.4236/gep.2014.22014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Batrusaitis, J. Chen, H. H., Rubasinghege, G., & Grassian, V. H. (2012). Heterogeneous Atmospheric Chemistry of Lead Oxide Particles with Nitrogen Dioxide Increases Lead Solubility: Environmental and Health Implications. Environmental Science & Technology, 46, 12806-12813. http://dx.doi.org/10.1021/es3019572
[2] Beiraghi, A. Babaee, S., & Roshdi, M. (2012). Simultaneous Preconcentration of Cadmium, Cobalt and Nickel in Water Samples by Cationic Micellar Precipitation and Their Determination by Inductively Coupled Plasma-Optical Emission Spectrometry. Microchemical Journal, 100, 66-71. http://dx.doi.org/10.1016/j.microc.2011.09.003
[3] Bendicho, C., Lavilla, I., Pena-Pereira, F., & Romero, V. (2012). Green Chemistry in Analytical Atomic Spectrometry: A Review. Journal of Analytical Atomic Spectrometry, 27, 1831-1857. http://dx.doi.org/10.1039/c2ja30214d
[4] Boda, A., & Sheikh, M. A. (2012). Density Functional Theoretical Investigation of Remarkably High Selectivity of the Cs+ Ion over the Na+ Ion toward Macrocyclic Hybrid Calix-Bis-Crown Ether. The Journal of Physical Chemistry A, 116, 8615-8623. http://dx.doi.org/10.1021/jp303817s
[5] Cerqueira, B., Vega, F. A., Serra, C., Silva, L. F. O., & Andrade, M. L. (2011). Time of Flight Secondary Ion Mass Spectrometry and High-Resolution Transmission Electron Microscopy/Energy Dispersive Spectroscopy: A Preliminary Study of the Distribution of Cu2+ and Cu2+/Pb2+ on a Bt Horizon Surfaces. Journal of Hazardous Materials, 195, 422-431. http://dx.doi.org/10.1016/j.jhazmat.2011.08.059
[6] Ebert D., & Bhushan, B. (2012). Durable Lotus-Effect Surfaces with Hierarchical Structure Using Micro- and Nanosized Hydrophobic Silica Particles. Journal of Colloid and Interface Science, 368, 584-591. http://dx.doi.org/10.1016/j.jcis.2011.09.049
[7] Gannoun, A., Boyet, M., El Goresy, A., & Devouard, B. (2011). REE and Actinide Microdistribution in Sahara 97072 and ALHA77295 EH3 Chondrites: A Combined Cosmochemical and Petrologic Investigation. Geochimica et Cosmochimica Acta, 75, 3269-3289. http://dx.doi.org/10.1016/j.gca.2011.03.017
[8] Howard, D. L., de Jonge, M. D., Lau, D., Hay, D., Varcoe-Cocks, M., Ryan, C. G., Kirkham, R., Moorhead, G., Paterson, D., & Thurrowgood, D. (2012). High-Definition X-Ray Fluorescence Elemental Mapping of Paintings. Analytical Chemistry, 84, 3278-3286. http://dx.doi.org/10.1021/ac203462h
[9] Hsieh, H. F., Chen, Y. H., & Wang, C. F. (2011). A Magnesium Hydroxide Preconcentration/Matrix Reduction Method for the Analysis of Rare Earth Elements in Water Samples Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Talanta, 85, 983-990. http://dx.doi.org/10.1016/j.talanta.2011.05.011
[10] Hu, X. Z., Wu, J. H., & Feng, Y. Q. (2010). Molecular Complex-Based Dispersive Liquid-Liquid Microextraction: Analysis of Polar Compounds in Aqueous Solution. Journal of Chromatography A, 1217, 7010-7016. http://dx.doi.org/10.1016/j.chroma.2010.09.013
[11] Iraji, A., Afzali, D., Mostafavi, A., & Fayazi, M. (2012). Ultrasound-Assisted Emulsification Microextraction for Separation of Trace Amounts of Antimony Prior to FAAS Determination. Microchimica Acta, 176, 185-192. http://dx.doi.org/10.1007/s00604-011-0706-0
[12] Meeravali, N. N., & Kumar, S. J. (2012). Determination of Cd, Pb, Cu, Ni and Mn in Effluents and Natural Waters by a Novel Salt Induced Mixed-Micelle Cloud Point Extraction Using ETAAS. Analytical Methods, 4, 2435-2440. http://dx.doi.org/10.1039/c2ay25216c
[13] Moradi, M., & Yamini, Y. (2012). Surfactant Roles in Modern Sample Preparation Techniques: A Review. Journal of Separation Science, 35, 2319-2340. http://dx.doi.org/10.1002/jssc.201200368
[14] Shaha, F., Kazia, T. G., Afridi, H. I., Naeemullah, A. M. B., & Baig, J. A. (2011). Cloud Point Extraction for Determination of Lead in Blood Samples of Children, Using Different Ligands Prior to Analysis by Flame Atomic Absorption Spectrometry: A Multivariate Study. Journal of Hazardous Materials, 192, 1132-1139. http://dx.doi.org/10.1016/j.jhazmat.2011.06.017
[15] Sun, Y. L., & Sun, M. (2007). Determination of 42 Trace Elements in Seawater by Inductively Coupled Plasma Mass Spectrometry after APDC Chelate Co-Precipitation Combined with Iron. Analytical Letters, 40, 2391-2404. http://dx.doi.org/10.1080/00032710701576056
[16] Tehrani, M. S., Azar, P. A., Husain, S. W., & Shafaei, F. (2010). Dispersive Liquid-Liquid Microextraction of Cr(VI) in Water and Hair Samples by Electrothermal Atomic Absorption Spectrometry. Asian Journal of Chemistry, 22, 6302-6310.
[17] Teresa Pena, M., Vecino-Bello, X., Carmen Casais, M. C., Carmen Mejuto, M., & Cela, R. (2012). Optimization of a Dispersive Liquid-Liquid Microextraction Method for the Analysis of Benzotriazoles and Benzothiazoles in Water Samples. Analytical and Bioanalytical Chemistry, 402, 1679-1695. http://dx.doi.org/10.1007/s00216-011-5598-7
[18] Wang, T. H., Hsieh, H. A., Hsieh, Y. K., Chiang, C. S., Sun, Y. C., & Wang, C. F. (2012). The Fate and in Vivo Biodistribution of CdSe Quantum Dots in Rat Tissues: A Laser Ablation Inductively Coupled Plasma Mass Spectrometry Study. Analytical and Bioanalytical Chemistry, 404, 3025-3036. http://dx.doi.org/10.1007/s00216-012-6417-5
[19] Wang, T. H., Li, M. H., & Teng, S. P. (2009). Bridging the Gap between Batch and Column Experiments: A Case Study of Cs Adsorption on Granite under High Solid/Liquid Ratio. Journal of Hazardous Materials, 161, 409-415. http://dx.doi.org/10.1016/j.jhazmat.2008.03.112
[20] Wang, T. H., Li, M. H., Wei, Y. Y., & Teng, S. P. (2010). Desorption of Cesium from Granite under Various Aqueous Conditions. Applied Radiation and Isotopes, 68, 2140-2146. http://dx.doi.org/10.1016/j.apradiso.2010.07.005
[21] West, M., Ellis, A. T., Potts, P. J., Streli, C., Vanhoof, C., Wegrzynek, D., & Wobrauschek, P. (2011). Atomic Spectrometry Update: X-Ray Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry, 26, 1919-1963. http://dx.doi.org/10.1039/c1ja90038b
[22] Xu, L. G., & He, J. H. (2012). Fabrication of Highly Transparent Superhydrophobic Coatings from Hollow Silica Nanoparticles. Langmuir, 28, 7512-7518. http://dx.doi.org/10.1021/la301420p
[23] Ye, G., Bai, F. F., Wei, J. C., Wang, J. C., & Chen, J. (2012). Novel Polysiloxane Resin Functionalized with Dicyclohexano-18-Crown-6 (DCH18C6): Synthesis, Characterization and Extraction of Sr(II) in High Acidity HNO3 Medium. Journal of Hazardous Materials, 225, 8-14. http://dx.doi.org/10.1016/j.jhazmat.2012.04.020
[24] Zeng, C. J., Lin, Y., Zhou, N., Zheng, J. T., & Zhang, W. (2012). Room Temperature Ionic Liquids Enhanced the Speciation of Cr(VI) and Cr(III) by Hollow Fiber Liquid Phase Microextraction Combined with Flame Atomic Absorption Spectrometry. Journal of Hazardous Materials, 237, 365-370. http://dx.doi.org/10.1016/j.jhazmat.2012.08.061

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.