Antinociceptive Effects of Pomegranate (Punica granatum L.) Juice and Seed Extracts on Acute Corneal Pain in Mice

Abstract

In the present study, the antinociceptive effects of acute (2, 4 and 6 ml/kg) and chronic (1, 2 and 3 ml/kg for 14 days)oral administration of pomegranate (Punica granatum L.) juice and seed extract with or without morphine and naloxane were investigated on hypertonic saline-induced acute corneal pain perception in mice. The number of eye wipes with a forelimb was counted for a period of 30 seconds as the criterion for pain assessment. Acute oral administration of the extract (at 6 ml/kg dose, once) and chronic oral administration (at 2 and 3 ml/kg for 14 days each) significantly decreased the number of eye wipes after subcutaneous injection of morphine (2 mg/kg, sc), naloxone (2 mg/kg, sc) and normal saline (2 mg/kg, sc) compared with control (p < 0.05). The morphine-induced antinociception was significantly improved by both acute and chronic oral administrations of pomegranate extract (p < 0.05). Naloxone (2 mg/kg, sc) did not reverse the antinociceptive effects of acute (at 6 ml/kg dose, once, oral) and chronic (at 2 and 3 ml/kg for 14 days each) treatments. These findings demonstrate that acute high-dose and long-term lower-dose of pomegranate juice and seed extract can decrease acute corneal pain and improve morphine-induced antinociception in mice.

Share and Cite:

Malek, Z. , Dara, S. and Jahromy, M. (2014) Antinociceptive Effects of Pomegranate (Punica granatum L.) Juice and Seed Extracts on Acute Corneal Pain in Mice. World Journal of Neuroscience, 4, 99-105. doi: 10.4236/wjns.2014.42012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Miguel, M.G., Neves, M.A. and Maria D.A. (2010) Pomegranate (Punica granatum L.): A Medicinal Plant with Myriad Biological Properties—A Short Review. Journal of Medicinal Plants Research, 4, 2836-2847.
[2] Jurenka, J.S. (2008) Therapeutic Applications of Pomegranate (Punica granatum L.): A Review. Alternative Medicine Review, 13, 128-144.
[3] Hadipour-Jahromy, M. and Mozaffari-Kermani, R. (2010) Chondroprotective Effects of Pomegranate Juice on Monoiodoacetate-Induced Osteoarthritis of the Knee Joint of Mice. Phytotherapy Research, 24, 182-185.
[4] Rahimi, H.R., Arastoo, M. and Ostad, S.N. (2012) A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches (Review). International Journal of Production Research, 11, 385-400.
[5] Esmaeili-Mahani, S., Rezaeezadeh-Roukerd, M., Esmaeilpour, K., Abbasnejad, M., Rasoulian, B., Sheibani, V., Kaeidi, A. and Hajializadeh, Z. (2010) Olive (Olea europaea L.) Leaf Extract Elicits Antinociceptive Activity, Potentiates Morphine Analgesia and Suppresses Morphine Hyperalgesia in Rats. Journal of Ethnopharmacology, 132, 200-205.
http://dx.doi.org/10.1016/j.jep.2010.08.013
[6] Sepahvand, R., Esmaeili-Mahani, S., Arzi, A., Rasoulian, B. and Abbasnejad, M. (2010). Ginger (Zingiber officinale Roscoe) Elicits Antinociceptive Properties and Potentiates Morphine-Induced Analgesia in the Rat Radiant Heat Tail-Flick Test. Journal of Medicinal Food, 13, 1397-1401. http://dx.doi.org/10.1089/jmf.2010.1043
[7] Hosseinzadeh, H. and Younesi, H.M. (2002). Petal and Stigma Extracts of Crocus sativus L. Have Antinociceptive and Anti-Inflammatory Effects in Mice. BMC Pharmacology, 2, 7-10. http://dx.doi.org/10.1186/1471-2210-2-7
[8] Ahmadiani, A., Hosseiny, J., Semnanian, S., Javan, M., Saeedi, F., Kamalinejad, M. and Saremi, S. (2000). Antinociceptive and Anti-Inflammatory Effects of Elaeagnus angustifolia Fruit Extract. Journal of Ethnopharmacology, 72, 287-292. http://dx.doi.org/10.1016/S0378-8741(00)00222-1
[9] Zendehdel, M., Taati, M., Amoozad, M. and Hamidi, F. (2012). Antinociceptive Effect of the Aqueous Extract Obtained from Foeniculum vulgare in Mice: The Role of Histamine. Iranian Journal of Veterinary Research, 13, 100-106.
[10] Akhondzadeh, S., Tahmacebi-Pour, N., Noorbala, A.A., Amini, H., Fallah-Pour, H., Jamshidi, A.H. and Khani, M. (2005) Crocus sativus L. in the Treatment of Mild to Moderate Depression: A Double-Blind, Randomized and Placebo-Controlled Trial. Phytotherapy Research, 19, 148-151. http://dx.doi.org/10.1002/ptr.1647
[11] Tamaddonfard, E., Khalilzadeh, E., Hamzeh-Gooshchi, N. and Seiednejhad-Yamchi, S. (2008) Central Effect of Histamine in a Rat Model of Acute Trigeminal Pain. Pharmacological Reports, 60, 219-224.
[12] Tamaddonfard, E., Hamzeh-Gooshchi, F. and Hamzeh-Gooshchi, N. (2010) Effect of Curcumin on Morphine-Induced Antinociception in Acute Corneal Pain in Rats. International Journal of Veterinary Research, 4, 127-131.
[13] Tamaddonfard, E. and Hamzeh-Gooshchi, N. (2010). Effects of Subcutaneous and Intracerebroventricular Injection of Physostigmine on the Acute Corneal Nociception in Rats. Pharmacological Reports, 62, 858-863.
http://dx.doi.org/10.1016/S1734-1140(10)70345-5
[14] Tamaddonfard, E., Farshid, A.A., Seiednejhad, S. and Morvaridi, A. (2011) Role of the Thalamic Parafascicular Nucleus Cholinergic System in the Modulation of Acute Corneal Nociception in Rats. Veterinary Research Forum, 2, 226-230.
[15] Bohn, L.M., Lefkowitz, R.J. and Caron, M.G. (2002) Differential Mechanisms of Morphine Antinociceptive Tolerance Revealed in (Beta) Arrestin-2 Knock-Out Mice. The Journal of Neuroscience, 22, 10494-10500.
[16] Bilsky, E.J., Bernstein, R.N., Wang, Z., Sadée, W. and Porreca, F. (1996) Effects of Naloxone and D-Phe-Cys-Tyr-DTrp-Arg-Thr-Pen-Thr-NH2 and the Protein Kinase Inhibitors H7 and H8 on Acute Morphine Dependence and Antinociceptive Tolerance in Mice. Journal of Pharmacology and Experimental Therapeutics, 277, 484-490.
[17] Sora, I., Li, X.F., Funada, M., Kinsey, S. and Uhl, G.R. (1999) Visceral Chemical Nociception in Mice Lacking MuOpioid Receptors: Effects of Morphine, SNC80 and U-50, 488. European Journal of Pharmacology, 366, R3-R5.
http://dx.doi.org/10.1016/S0014-2999(98)00933-9
[18] Wenk, H.N., Nannenga, M.N. and Honda, C.N. (2003) Effect of Morphine Sulphate Eye Drops on Hyperalgesia in the Rat Cornea. Pain, 105, 455-465. http://dx.doi.org/10.1016/S0304-3959(03)00260-4
[19] Bereiter, D.A. (1997) Morphine and Somatostatin Analogue Reduce c-fos Expression in Trigeminal Subnucleus Caudalis Produced by Corneal Stimulation in the Rat. Neuroscience, 77, 864-874.
http://dx.doi.org/10.1016/S0306-4522(96)00541-6
[20] Arletti, R., Benelli, A. and Bertolini, A. (1993) Influence of Oxytocin on Nociception and Morphine Antinociception. Neuropeptides, 24, 125-129. http://dx.doi.org/10.1016/0143-4179(93)90075-L
[21] Morgan, M.M., Fossum, E.N., Stalding, B.M. and King, M.M. (2006) Morphine Antinociceptive Potency on Chemical, Mechanical, and Thermal Nociceptive Tests in the Rat. Pain, 7, 358-366. http://dx.doi.org/10.1016/j.jpain.2005.12.009
[22] Stoffel, E.C., Ulibarri, C.M. and Craft, R.M. (2003) Gonadal Steroid Hormone Modulation of Nociception, Morphine Antinociception and Reproductive Indices in Male and Female Rats. Pain, 103, 285-302.
http://dx.doi.org/10.1016/s0304-3959(02)00457-8
[23] Mogil, J.S., Kest, B., Sadowski, B. and Belknap, J.K. (1996) Differential Genetic Mediation of Sensitivity to Morphine in Genetic Models of Opiate Antinociception: Influence of Nociceptive Assay. Journal of Pharmacology and Experimental Therapeutics, 276, 532-544.
[24] Christensen, D., Gautron, M., Guilbaud, G. and Kayser, V. (1999) Combined Systemic Administration of the Glycine/ NMDA Receptor Antagonist, (+)-HA966 and Morphine Attenuates Pain-Related Behaviour in a Rat Model of Trigeminal Neuropathic Pain. Pain, 83, 433-440. http://dx.doi.org/10.1016/S0304-3959(99)00126-8
[25] Farazifard, R., Safapour, F., Sheibani, V. and Javan, M. (2005) Eye-Wiping Test: A Sensitive Animal Model for Acute Trigeminal Pain Studies. Brain Research Protocols, 16, 44-49. http://dx.doi.org/10.1016/j.brainresprot.2005.10.003
[26] Jurenka, J.S. (2008) Therapeutic Applications of Pomegranate (Punica granatum L.): A Review. Alternative Medicine Review, 13, 128-144.
[27] Noda, Y., Kaneyuki, T., Mori, A. and Packer, L. (2002) Antioxidant Activities of Pomegranate Fruit Extract and Its Anthocyanidins:? Delphinidin, Cyanidin, and Pelargonidin. Journal of Agricultural and Food Chemistry, 50, 166-171.
http://dx.doi.org/10.1021/jf0108765
[28] Ignarro, L.J., Byrns, R.E., Sumi, D., Nigris, F.D. and Napoli, C. (2006) Pomegranate Juice Protects Nitric Oxide against Oxidative Destruction and Enhances the Biological Actions of Nitric Oxide. Nitric Oxide, 15, 93-102.
http://dx.doi.org/10.1016/j.niox.2006.03.001
[29] Nigris, F.D., Williams-Ignarro, S., Lerman, L.O., Crimi, E., Botti, C., Mansueto, G., D’Armiento, F.P., De Rosa, G., Sica, V., Ignarro, L.G. and Napoli, C. (2005) Beneficial Effects of Pomegranate Juice on Oxidation-Sensitive Genes and Endothelial Nitric Oxide Synthase Activity at Sites of Perturbed Shear Stress. Proceedings of the National Academy of Sciences of the United States of America, 102, 4896-4901. http://dx.doi.org/10.1073/pnas.0500998102
[30] Ignarro, L.J. and Napolic, C. (2004) Novel Features of Nitric Oxide, Endothelial Nitric Oxide Synthase, and Atherosclerosis. Current Atherosclerosis Reports, 6, 281-287. http://dx.doi.org/10.1007/s11883-004-0059-9
[31] Villanueva, C. and Giulivi, C. (2010) Subcellular and Cellular Locations of Nitric Oxide Synthase Isoforms as Determinants of Health and Disease. Free Radical Biology and Medicine, 49, 307-316.
http://dx.doi.org/10.1016/j.freeradbiomed.2010.04.004
[32] Toda, N., Kishioka, S., Hatano, Y. and Toda, H. (2009) Modulation of Opioid Actions by Nitric Oxide Signaling (Review). Anesthesiology, 110, 166-181. http://dx.doi.org/10.1097/ALN.0b013e31819146a9
[33] ?zek, M., üresin, Y. and Güng?r, M. (2003) Comparison of the Effects of Specific and Nonspecific Inhibition of Nitric Oxide Synthase on Morphine Analgesia, Tolerance and Dependence in Mice. Life Sciences, 72, 1943-1951.
http://dx.doi.org/10.1016/S0024-3205(03)00100-0
[34] Grover, V.S., Sharma, A. and Singh, M. (2000) Role of Nitric Oxide in Diabetes-Induced Attenuation of Antinociceptive Effect of Morphine in Mice. European Journal of Pharmacology, 399, 161-164.
http://dx.doi.org/10.1016/S0014-2999(00)00343-5

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.