Share This Article:

Transport Properties of AgInSe2 Crystals

Abstract Full-Text HTML XML Download Download as PDF (Size:851KB) PP. 292-299
DOI: 10.4236/msa.2014.55035    3,103 Downloads   4,132 Views   Citations

ABSTRACT

AgInSe2 crystals were grown by Bridgman technique. The crystals were identified structurally by X-ray diffraction technique. Measurements of electrical conductivity and Hall effect were performed in the temperature range (138 K - 434 K) and (220 K - 488 K) for thermoelectric power measurements. From these measurements, many physical parameters were determined. The energy gap was calculated to be 1.24 eV. The conductivity type was found to be n-type. Crystallite size (D) of the obtained AgInSe2 crystals was calculated to be 70 nm. The lattice parameters for the prepared crystals were a = 6.0938 ? and c = 11.7775 ?.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Shaban, H. and Gergs, M. (2014) Transport Properties of AgInSe2 Crystals. Materials Sciences and Applications, 5, 292-299. doi: 10.4236/msa.2014.55035.

References

[1] Santos Kumar, M.C. and Praveen, B. (2004) Formation and Properties of AgInSe2 Thin Films by Co-Evaporation. Vacuum, 72, 369-378. http://dx.doi.org/10.1016/j.vacuum.2003.09.008
[2] Mobarak, M., Shaban, H.T. and Elhady, A.F. (2008) Electrical and Thermoelectric Properties of CuInS2 Single Crystals. Materials Chemistry and Physics, 109, 287-290.
http://dx.doi.org/10.1016/j.matchemphys.2007.11.025
[3] Colakoglu, T. and Parlak, M. (2008) Structural Characterization of Polycrystalline Ag-In-Se Thin Films Deposited by E-Beam Technique. Applied Surface Science, 254, 1569-1577.
http://dx.doi.org/10.1016/j.apsusc.2007.07.092
[4] Kishigui, K., Abe, K., et al., (2008) Study of Steady-State Photoluminescence of AgInSe2 Crystals. Thin Solid Films, 517, 1445-1448. http://dx.doi.org/10.1016/j.tsf.2008.09.014
[5] Al-Agel, F.A. and Mahmoud, W.E. (2012) Synthesis and Characterization of AIS Chalcopyrite Thin Films for Solar Cell Applications. Materials Letters, 82, 82-84. http://dx.doi.org/10.1016/j.matlet.2012.05.065
[6] Maihmoud, F.A. and Sayed, N.H. (2011) Preparation and Chartacterization of AgInSe2 Thin Films. Chalcogenide Letters, 8, 595-600.
[7] Yoshinoa, K., et al., (2001) Optical and Electrical Properties of AgIn(SSe)2 Crystals. Physica B, 302-303, 349-356.
http://dx.doi.org/10.1016/S0921-4526(01)00453-7
[8] Abdelghany, A. (1995) Electrical Conductivity and Thermoelectric Power of AgInSe2 in the Solid and Liquid States. Applied Physics A, 60, 77-79. http://dx.doi.org/10.1007/BF01577617
[9] Ying, P.Z., et al., (2012) Thermoelectric Properties of a Wide-Gap Chalcopyrite Compound AgInSe2. Key Enginering Materials, 519, 188-192. http://dx.doi.org/10.4028/www.scientific.net/KEM.519.188
[10] Yoshino, K., et al., (2008) Structural and Electrical Characterization of AgInSe2 Crystals Grown by Hot-Press Method. Journal of Physics: Conference Series, 100, 042042.
[11] Mustafa, H., Hunter, D., Pradhan, A.K., Roy, U.N., Cuib, Y. and Burger, A. (2007) Synthesis and Characterization of AgInSe2 for Application in Thin Film Solar Cells. Thin Solid Films, 515, 7001-7004.
http://dx.doi.org/10.1016/j.tsf.2007.02.054
[12] Isenberg, L., Russel, B. and Greene, R.F. (1948) Improved Method for Measuring Hall Coefficients. Review of Scientific Instruments, 19, 685. http://dx.doi.org/10.1063/1.1741078
[13] Hussein, S.A. (1989) Temperature Dependences of the Electrical Conductivity and Hall Coefficient of Indium Telluride Single Crystals. Crystal Research and Technology, 24, 635.
http://dx.doi.org/10.1002/crat.2170240616
[14] Benoit, P., Charpin, P., Lesueur, R. and Djega-Mariadassou, C. (1980) Crystal Structure of Chalcopyrite AgInSe2. Japanese Journal of Applied Physics, 19, 85-88. http://dx.doi.org/10.7567/JJAPS.19S3.85
[15] Ebnalwaled, A.A. (2009) Evolution of Growth and Enhancement in Power Factor of InSb Bulk Crystal. Journal of Crystal Growth, 311, 4385-4390. http://dx.doi.org/10.1016/j.jcrysgro.2009.07.040
[16] Tell, B. and Kasper, H.M. (1974) Electrical properties of AgInSe2. Journal of Applied Physics, 45, 5367.
http://dx.doi.org/10.1063/1.1663244
[17] Shay, J.L. and Wernick, J.H. (1975). Ternary Chalcopyrite Semiconductors, Pergamon NY.
[18] Johnson, V.A. and Lark-Horov, K. (1953) Theory of Thermoelectric Power in Semiconductors with Applications to Germanium. Physical Review, 92, 226-232. http://dx.doi.org/10.1103/PhysRev.92.226
[19] Wilson, H. (1953). Theory of Metals, 2nd A Edition, Cambridge University Press, Cambridge.
[20] Chalbtov, V.K. (1969) An introduction to Semiconductor (in Russian).

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.