Progress in Recycling of Composites with Polycyanurate Matrix

Abstract

Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly; others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.

Share and Cite:

Dreyer, C. , Söthje, D. and Bauer, M. (2014) Progress in Recycling of Composites with Polycyanurate Matrix. Advances in Chemical Engineering and Science, 4, 167-183. doi: 10.4236/aces.2014.42020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Armstrong, K.B., Bevan, L.G. and Cole, II, W.F. (2005) Care and Repair of Advanced Composites. 2nd Edition, SAE International, Warrendale.
[2] Witten, E. (2014) Handbuch Faserverbundkunststoffe, Composites: Grundlagen, Verarbeitung, Anwendungen/AVK— Industrievereinigung Verstarkte Kunststoffe e.V. 4th Edition, Springer Vieweg, Wiesbaden.
http://dx.doi.org/10.1007/978-3-658-02755-1
[3] Dreyer, C., Sothje, D., Klauke, K. and Bauer, M. (2013) Chemisches Recycling von Composites. MaschinenMarkt: MM Compositesworld, 118, 26-28.
[4] Drechsler, K. and Middendorf, P. (2012) New Composite Technologies for Automotive Applications. 3rd International IQPC-Congress, Wiesbaden, 3-5 December 2012, 45-56.
[5] Meilhan, N. (2013) Strategies of Global OEMs to Reduce Future Car Weight. Proceedings of the Transportation Weight Loss Diet Conference, Stuttgart, 5-6 June 2013, 40.
[6] Marsh, G. (2013) Composites Poised to Transform Airline Economics. Reinforced Plastics, 57, 18-24.
http://dx.doi.org/10.1016/S0034-3617(13)70088-2
[7] Martin, D. and Bacaloglu, R. (1980) Organische Synthesen Mit Cyansaureestern. 1st Edition, Akademie-Verlag, Berlin.
[8] Martin, D. (1964) Phenyl Cyanate. Angewandte Chemie International Edition, 3, 311.
http://dx.doi.org/10.1002/anie.196403112
[9] Jensen, K.A. and Holm, A. (1964) Formation of Monomeric Alkyl Cyanates by the Decomposition of 5-Alkoxy-1, 2,3,4-Thiatriazoles. Acta Chemica Scandinavica, 18, 826-828.
http://dx.doi.org/10.3891/acta.chem.scand.18-0826
[10] Grigat, E. and Putter, R. (1964) Chemie der Cyansaureester, I. Cyansaureester aus Hydroxylverbindungen und Halogencyan. Chemische Berichte, 97, 3012-3017.
http://dx.doi.org/10.1002/cber.19640971107
[11] Hamerton, I. (1994) Chemistry and Technology of Cyanate Ester Resins. 1st Edition, Chapman & Hall, Glasgow.
http://dx.doi.org/10.1007/978-94-011-1326-7
[12] Productflyer (2009) LONZA Primaset Cyanate Esters: The Next Generation of High Performance Thermosets. Switzerland.
http://www.lonza.com/products-services/materials-science/high-performance-materials/primaset-cyanate-esters.aspx
[13] Bauer, M., Decker, D., Richter, F. and Gwiazda, M. (2010) Hybrid Polymers Made of Cyanates and Silazanes, Method for the Production and Use Thereof. Patent EP Patent 2408846 B1.
[14] Dreyer, C., Schneider, J., Gocks, K., Beuster, B., Bauer, M., Keil, N., Yao, H., Zawadzki, C. and Radmer, O. (2002) Polymere fur Anwendungen in der integrierten Optik—Ein Uberblick mit ausgewahlten Beispielen. e & i Elektrotechnik und Informationstechnik, 120, 178-185.
[15] Dreyer, C.J., Bauer, M., Bauer, J., Keil, N., Yao, H.H. and Zawadzki, C. (2001) Polycyanurate Ester Resins with Low Loss and Low Birefringence for Use in Integrated Optics. Linear and Nonlinear Optics of Organic Materials, 4461, 188-199. http://dx.doi.org/10.1117/12.449847
[16] Dreyer, C., Bauer, M., Bauer, J., Keil, N., Yao, H.H. and Zawadzki, C. (2002) Reduction of the Optical Loss and Optimization of Polycyanurate Thermosets Used in Integrated Optics. Microsystem Technologies, 7, 229-238,
http://dx.doi.org/10.1007/s005420100102
[17] Sothje, D., Dreyer, C., Bauer, M., Schulze, C., Riedel, U. and Eppinger, A. (2013) Mikrowellenhartbareduromere Matrixharze fur Automobilanwendungen: Entwicklung Reparaturund Recyclingfahiger Leichtbaumaterialien. Konstruktion, 65, IW 5-7.
[18] ACARE (2013) Roadmap for Cross-Modal Transport Infrastructure Innovation.
http://www.acare4europe.org/sites/acare4europe.org/files/document/ETP%20Roadmap.pdf
[19] Directive 2000/53/EC of the European parliament and of the Council (2000) End-of Life Vehicles.
[20] Xiao, X., Hoa, S.V. and Street, K.N. (1994) Repair of Thermoplastic Resin Composites by Fusion Bonding. In: Damico, D.J., Wilkinson, Jr., T.L. and Niks, L.F.S., Eds., Composites Bonding, 1227, 30-44.
[21] Davies, P., Cantwell, W.J., Jar, P.Y., Bourban, P.E., Zysman, V. and Kausch, H.H. (1991) Joining and Repair of Carbon Fiber-Reinforced Thermoplastics. Composites, 22, 425-431.
http://dx.doi.org/10.1016/0010-4361(91)90199-Q
[22] Varadan, V.K. and Varadan, V.V. (1991) Microwave Joining and Repair of Composite Materials. Polymer Engineering & Science, 31, 470-486. http://dx.doi.org/10.1002/pen.760310703
[23] Dang, W., Kubouchi, M., Sembokuya, H. and Tsuda, K. (2005) Chemical Recycling of Glass Fiber Reinforced Epoxy Resin Cured with Amine Using Nitric Acid. Polymer, 46, 1905-1912.
http://dx.doi.org/10.1016/j.polymer.2004.12.035
[24] Liang, B., Pastine, S.J. and Qin, B. (2012) Novel Agents for Reworkable Epoxy Resins. WO Patent 2012/071896 A1.
[25] Williams, P., et al. (2003) Recycling of Automotive Composites—The Pyrolysis Process and its Advantages. Materials World, 11, 24-26.
[26] Holl, R. (1982) Process to Increase the Yield of Pyrolysis Oil and to Shorten the Duration of the Pyrolysis. Patent GB 2129009 A.
[27] Giehr, A., Hover, H., Keim, K., Joachim K. and Neuwirth, O. (1984) Verfahren zur Aufarbeitung von Kohlenstoff enthaltenden Abfallen. Patent DE 3442506 C2.
[28] Tippmer, K. (1994) Verfahren zur thermischen Spaltung von Abfall-Kunststoff-Gemischen. Patent DE 4412941 A1.
[29] Brautigam, K.R., Kupsch, C., Reßler, B. and Sardemann, G. (2003) Analyse der Umweltauswirkungen bei der Herstellung, dem Einsatz und der Entsorgung von CFK-bzw. Aluminiumrumpfkomponenten. Research Report FZKA 6879, Forschungszentrum Karlsruhe, Karlsruhe.
[30] Braun, D., Gentzkow, W. and Rudolf, A. (1998) Recycling von Duroplastwerkstoffen. Patent DE 19839083.
[31] Zia, K.M., Bhatti, N.H. and Bhatti, I.A. (2007) Methods for Polyurethane and Polyurethane Composites, Recycling and Recovery: A Review. Reactive and Functional Polymers, 67, 675-692.
http://dx.doi.org/10.1016/j.reactfunctpolym.2007.05.004
[32] Kaeufer, H. and Bollin, H. S. (1996) Verfahren fur das Recycling von Epoxidharz enthaltenden Erzeugnissen. Patent WO001996016112A1.
[33] (2013) http://www.connoratech.com/technology/recyclable-epoxy-data/
[34] El Gersifi, K. Durand, G. and Tersac, G. (2006) Solvolysis of Bisphenol A Diglycidyl Ether/Anhydride Model Networks. Polymer Degradation and Stability, 91, 690-702. http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.021
[35] Bauer, J., Bauer, M. and Gocks, K. (1997) Method of Decomposing Polycyanurate-Containing Materials. US Patent No: 000005691388A.
[36] Dreyer, C. Sothje, D. and Bauer, M. (2013) Progress in Recyclable Cyanate Resins. Thermosets 2013 from Monomers to Components Proceedings of the 3rd International Conference on Thermosets, Berlin, 18-20 September 2013, 159-162.
[37] Sothje, D. Dreyer, C. and Bauer, M. (2013) Advanced Possibilities in Thermoset Recycling. Thermosets 2013 from Monomers to Components Proceedings of the 3rd International Conference on Thermosets, Berlin, 18-20 September 2013, 219-223.
[38] (2013) Determination of Hydroxyl Value. German Industry Standard, DIN 53240.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.