[1]
|
Allison, P. D. (2001). Missing Data. London: Sage Publications, Inc.
|
[2]
|
Barzi, F. (2004). Imputations of Missing Values in Practice: Results from Imputations of Serum Cholesterol in 28 Cohort Studies. American Journal of Epidemiology, 160, 34-45. http://dx.doi.org/10.1093/aje/kwh175
|
[3]
|
Bernaards, C. A., Farmer, M. M., Qi, K., Dulai, G. S., Ganz, P. A., & Kahn, K. L. (2003). Comparison of Two Multiple Imputation Procedures in a Cancer Screening Survey. Journal of Data Science, 1, 293-312.
|
[4]
|
Bernhagen, P., & Marsh, M. (2007). The Partisan Effects of Low Turnout: Analyzing Vote Abstention as a Missing Data Problem. Electoral Studies, 26, 548-560. http://dx.doi.org/10.1016/j.electstud.2006.10.002
|
[5]
|
Florez-Lopez, R. (2010). Effects of Missing Data in Credit Risk Scoring. A Comparative Analysis of Methods to Achieve Robustness in the Absence of Sufficient Data. Journal of the Operational Research Society, 61, 486-501. http://dx.doi.org/10.1057/jors.2009.66
|
[6]
|
Gelman, A., King, G., & Liu, C. (1998). Not Asked and Not Answered: Multiple Imputation for Multiple Surveys. Journal of the American Statistical Association, 93, 846-857. http://dx.doi.org/10.1080/01621459.1998.10473737
|
[7]
|
Graham, J. W. (2009). Missing Data Analysis: Making It Work in the Real World. Annual Review of Psychology, 60, 549576. http://dx.doi.org/10.1146/annurev.psych.58.110405.085530
|
[8]
|
He, Y., & Raghunathan, T. E. (2009). On the Performance of Sequential Regression Multiple Imputation Methods with NonNormal Error Distributions. Communications in Statistics-Simulation and Computation, 38, 856-883. http://dx.doi.org/10.1080/03610910802677191
|
[9]
|
Honaker, J., King, G., & Blackwell, M. (2009). Amelia Software Web Site http://gking.harvard.edu/amelia
|
[10]
|
Honaker, J., King, G., & Blackwell, M. (2011). Amelia II: A Program for Missing Data. Journal of Statistical Software, 45, 1-47.
|
[11]
|
Imai, K., King, G., & Lau, O. (2004). Zelig: Everyone’s Statistical Software. http://GKing.Harvard.Edu/zelig
|
[12]
|
King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation. American Political Science Review, 95, 49-69.
|
[13]
|
Liu, F. C.-S. (2010). Reconstruct Partisan Support Distribution with Multiply Imputed Survey Data: A Case Study of Taiwan’s 2008 Presidential Election. Survey Research, 24, 135-162.
|
[14]
|
Paul, C., Mason, W. M., McCaffrey, D., & Fox, S. A. (2008). A Cautionary Case Study of Approaches to the Treatment of Missing Data. Statistical Methods and Applications, 17, 351-372. http://dx.doi.org/10.1007/s10260-007-0090-4
|
[15]
|
Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics. New York: Wiley. http://dx.doi.org/10.1002/9780470316696
|
[16]
|
Snijders, T. A. B., & Bosker, R. (2011). Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (2nd ed.). Longdon: Sage Publications Ltd.
|
[17]
|
Stuart, E. A., Azur, M., Frangakis, C., & Leaf, P. (2009). Multiple Imputation with Large Data Sets: A Case Study of the Children’s Mental Health Initiative. American Journal of Epidemiology, 169, 1133-1139. http://dx.doi.org/10.1093/aje/kwp026
|
[18]
|
Su, Y.-S., Gelman, A., Hill, J., & Yajima, M. (2011). Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box. Journal of Statistical Software, 45, 1-31.
|
[19]
|
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45, 1-67.
|