Share This Article:

Restoration-Focused Germination and Development of Five Central Mexican Oak Species

Abstract Full-Text HTML Download Download as PDF (Size:1360KB) PP. 171-180
DOI: 10.4236/ojf.2014.43023    3,838 Downloads   5,359 Views   Citations

ABSTRACT

In the genus Quercus, regeneration by seed is reduced or absent in many species. The naturally protected area of the Sierra Fria, in Aguascalientes, Mexico contains forests that are fragmented and have been degraded due to human activities. The oak populations in this region demonstrate a very restricted sexual regeneration, with five of the most abundant species of this genus: Quercuseduardii, Q. grisea, Q. potosina, Q. resinosa and Q. sideroxyla presenting low seedling recruitment. In this study we evaluated seed viability and the effect of seed size on the germination, growth and survival of the trees, with the aim of recommending restoration and conservation program management actions for these oak species. In 2005 and 2006, 5000 acorns of each species were collected and viability, germination and growth experiments were performed in the laboratory and greenhouse. We found high seed viability and significant size effect (P < 0.05) on levels of germination, growth and survival of these five species of oaks. Our results suggest that environmental and ecological factors have implications for the quality of the seeds produced. This work provides a basis for low cost seed and appropriate management strategies for restoration programs.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Cecilia, A. , Eduardo, C. , Ana, M. , Victor, A. , Susana, V. , Gabriel, G. , Fanny, W. and Ricardo, C. (2014) Restoration-Focused Germination and Development of Five Central Mexican Oak Species. Open Journal of Forestry, 4, 171-180. doi: 10.4236/ojf.2014.43023.

References

[1] Alfonso-Corrado, C., Esteban-Jiménez, R., Clark-Tapia, R., Pinero, D., Campos, J. E., & Mendoza, A. (2004). Clonal and Genetic Structure of Two Mexican Oaks: Quercuseduardii and Q. potosina (Fagaceae). Evolutionary Ecology, 18, 585-599. http://dx.doi.org/10.1007/s10682-004-5145-5
[2] Alfonso-Corrado, C., Clark-Tapia, R., & Mendoza, A. (2007). Demography and Management of Two Clonal Oaks: Quercuseduardii and Q. potosina (Fagaceae) in Central Mexico. Forest Ecology and Management, 251, 129-141.
http://dx.doi.org/10.1016/j.foreco.2006.11.004
[3] Bonner, F. T. (2003). Collection and Care of Acorns: A Practical Guide for Seed Collectors and Nursery Managers.
http://www.nsl.fs.fed.us/COLLECTION%20AND%20CARE%200F%20ACORNS.pdf
[4] Branco, M., Branco, C., Merouami, H., & Almeida, M. H. (2002). Germination Success, Survival and Seedling Vigor of Quercussuber Acorns in Relation to Insect Damage. Forest Ecology and Management, 166, 159-164.
http://dx.doi.org/10.1016/S0378-1127(01)00669-7
[5] Brown, S., & Lugo, A. E. (1994). Rehabilitation of Tropical Lands: A Key to Sustaining Development. Restoration Ecology, 2, 97-111. http://dx.doi.org/10.1111/j.1526-100X.1994.tb00047.x
[6] Cervantes, V., Carabias, J., & Arriaga, V. (2008). Evolución de las políticas públicas de restauración ambiental. In Conabio (Ed.), Capital Natural de México, Políticas Públicas y Perspectivas de Sustentabilidad (Vol. III, pp. 155-226). México, D.F.: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
[7] Challenger, A. (1998). Utilización y conservación de los ecosistemas terrestres de México. Pasado, presente y futuro. México, D.F.: CONABIO-UNAM-SIERRA MADR.
[8] Chapa-Bezanilla, D., Sosa-Ramírez, J., & de Alba-ávila, A. (2008). Estudio Multitemporal de los Bosques de Sierra Fría, Aguascalientes, México. Maderas y Bosques, 14, 37-51.
[9] Chazdon, R. L. (2008). Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science, 320, 1458-1460. http://dx.doi.org/10.1126/science.1155365
[10] Chazdon, R., Harvey, C. A., Komar, O., Griffith, D. M., Ferguson, B. G., Martinez-Ramos, M., et al. (2009). Beyond Reserves: A Research Agenda for Conserving Biodiversity in Human-modified Tropical Landscapes. Biotropica, 41, 141-153. http://dx.doi.org/10.1111/j.1744-7429.2008.00471.x
[11] Csóka, G, & Hirka, A. (2006). Acorn Infections in Hungary: Direct and Indirect Effects on Oaks’ Fecundity. Gmundsen, Austria: IUFRO Proceedings of the Workshop, 109-120.
[12] Dalling, J. W., & Hubbell, S. P. (2002). Seed Size, Growth Rate and Gap Microsite Conditions as Determinants of Recruitment Success for Pioneer Species. Journal of Ecology, 90, 557-568.
http://dx.doi.org/10.1046/j.1365-2745.2002.00695.x
[13] Daws, M., Garwood, N., & Pritchard, H. (2005).Traits of Recalcitrant Seeds in a Semi-Deciduous Tropical Forest in Panamá. Functional Ecology, 19, 874-885. http://dx.doi.org/10.1111/j.1365-2435.2005.01034.x
[14] del Moral, R., Walker, L. R., & Bakker, J. P. (2007). Insights Gained from Succession for the Restoration of Landscape Structure and Function. In L. R. Walker, J. Walker, & R. J. Hobbs (Eds.), Linking Restoration and Ecological Succession, (pp. 19-44). New York, NY: Springer Science+Business Media, LLC.
[15] Eriksson, O., & Jakobsson, A. (1998). Recruitment Trade-Offs and the Evolution of Dispersal Mechanisms in Plants. Evolutionary Ecology, 13, 411-423. http://dx.doi.org/10.1023/A:1006729311664
[16] Esquivel, J. M., Harvey, C. A., Finegan, B., Casanoves, F., & Skarpe, C. (2008). Effects of Pasture Management on the Natural Regeneration of Neotropical Trees. Journal of Applied Ecology, 45, 371-380.
http://dx.doi.org/10.1111/j.1365-2664.2007.01411.x
[17] Fukumoto, H., & Kajimura, H. (2000). Effects of Insects Predation on Hypocotyl Survival and Germination Success of Mature Quercusvariabilis Acorns. Journal of Forest Research, 5, 31-34. http://dx.doi.org/10.1007/BF02762760
[18] Gomez, J. M., García, D., & Zamora, R. (2003). Impact of Vertebrate Acorn and Seedling-Predators on a Mediterranean Quercuspyrenaica Forest. Forest Ecology and Management, 180, 125-134.
http://dx.doi.org/10.1016/S0378-1127(02)00608-4
[19] Gomez, J. M. (2004). Bigger is not Always Better: Conflicting Selective Pressures on Seed Size in Quercus ilex. Evolution, 58, 71-80.
[20] Gorgonio-Ramírez, M. (2012). Variabilidad y estructura genética de Quercus eduardii (Fagaceae) en Sierra Fría, Aguacalientes. Unpublished BSc Thesis, Oaxaca, México: Universidad de la Sierra Juárez, Ixtlán de Juárez.
[21] Greipsson, S. (2011). Restoration Ecology. Sudbury, MA: Jones & Bartlett Learning, LLC.
[22] Gribko, L. S., & Jones, W. E. (1995). Test of the Float Method of Assessing Northern Red Oak Acorn Viability. Tree Planter’s Notes, 46, 143-147.
[23] Gribko, L. S., Schuler, T. M., & Ford, W. M. (2002). Biotic and Abiotic Mechanisms in the Establishment of Northern Red Oak Seedlings: A Review. US Department of Agriculture, Forest Service, Northeastern Research Station.
[24] Harper, J. L. (1977). Population Biology of Plants. New York, NY: Academic Press, 892 p.
[25] Hartmann, H. T., & Kester, D. E. (1981). Propagación de Plantas. México, D.F.: CECSA, 814 p.
[26] Hou, X., Yi, X., Yang, Y., & Liu, W. (2010). Acorn Germination and Seedling Survival of Q. variabilis: Effects of Cotyledon Excision. Annals of Forest Science, 67, 711. http://dx.doi.org/10.1051/forest/2010036
[27] Kajimura, H., & Fukomoto, H. (2005). Cumulative Effects of Mortality on Reproductive Output in Two Co-Occurring Quercus Species: Which Mortality Factors Most Strongly Reduce Reproductive Potential? Canadian Journal of Botany, 83, 1151-1158. http://dx.doi.org/10.1139/b05-090
[28] Kermode, A. R., & Finch-Savage, W. E. (2002). Desiccation Sensitivity in Orthodox and Recalcitrant Seeds in Relation to Development. In M. Black, & H. W. Pritchard (Eds.), Desiccation and Survival in Plants. Drying without Dying (pp. 149-184). Wallingford: CABI Publishing.
http://dx.doi.org/10.1079/9780851995342.0149
[29] Kelly, D., & Sork, V. L. (2002). Mast Seeding in Perennial Plants: Why, How, Where? Annual Review of Ecology and Systematics, 33, 427-447. http://dx.doi.org/10.1146/annurev.ecolsys.33.020602.095433
[30] Lamb, D., & Gilmour, D. (2003). Rehabilitation and Restoration of Degraded Forests. Gland, Switzerland: IUCN, Gland, Switzerland and Cambridge, UK and WWF, 110 p.
[31] Lamb, D., Erskine, P. D., & Parrotta, J. A. (2005). Restoration of Degraded Tropical Forest Landscapes. Science, 310, 1628-1632. http://dx.doi.org/10.1126/science.1111773
[32] Martinez, P. G., Orozco, S. A., & Martorell, C. (2006). Efectividad de Algunos Tratamientos Pre-Germinativos para Ocho Especies Lenosas de la Mixteca Alta Oaxaquena con Características Relevantes para la Restauración. Boletín de la Sociedad Botánica de México, 79, 9-20.
[33] Masera, O., Astier, M., & López-Ridaura, S. (1999). Sustentabilidad y manejo de recursos naturales, el marco de evaluación MESMIS. México, D.F.: Multiprensa/GIRA/Instituto de Ecología, UNAM, 109 p.
[34] Minnich, R., Sosa-Ramírez, J., Franco-Vizcaíno, E., Barry, W. J., & Siqueiros, M. (1994). Reconocimiento Preliminar de la Vegetación y de los Impactos de las Actividades Humanas en la Sierra Fría, Aguascalientes. Revista Investigación y Ciencia, 4, 23-29.
[35] Navarro, F. B., Jiménez, M. N., Ripoll, M. á., Fernández-Ondono, E., Gallego, E., & De Simón, E. (2006). Direct Sowing of Holm Oak Acorns: Effects of Acorn Size and Soil Treatment. Annals of Forest Science, 63, 961-967.
http://dx.doi.org/10.1051/forest:2006079
[36] Pons, J., & Pausas, J. G. (2007). Not Only Size Matters: Acorn Selection by the European Jay (Garrulus glandarius). Acta Oecologica, 31, 353-360. http://dx.doi.org/10.1016/j.actao.2007.01.004
[37] Quero, J. L., Villar, R., Maranón, T., Zamora, R., & Poorter, L. (2007). Seed-Mass Effects in Four Mediterranean Quercus Species (Fagaceae) Growing in Contrasting Light Environments. American Journal of Botany, 94, 1795-1803.
http://dx.doi.org/10.3732/ajb.94.11.1795
[38] Rosas-Osorio, J. C., Alfonso-Corrado, C., Monsalvo-Reyes, A., Clark-Tapia, R., Lira-Saade, R., & Campos-Contreras, J. (2010). The Genetic Variability of Quercus grisea Liebm. in the Sierra Fría of Aguascalientes, México. International Oak Journal, 21, 64-72.
[39] SAS, Institute Inc. (2001). SAS® Version 8.1 [Computer Program]. Cary, N.C.: SAS Institute Inc.
[40] Secretaria de Desarrollo Social (SEDESO) (1993). Estudio para la declaratoria de la Sierra Fría como área Natural Protegida. Aguascalientes, México.
[41] Segura-Burciaga, S. G. (2005). Las especies introducidas: ¿benéficas o daninas?. In ó. Sánchez, E. Peters, R. MárquezHuitzil, E. Vega, G. Portales, M. Valdez, & D. Azuara (Eds.), Temas sobre restauración ecológica (pp. 127-134). México, D.F.: Secretaría de Medio Ambiente y Recursos Naturales Instituto Nacional de Ecología U.S. Fish & Wildlife Service Unidos para la Conservación, A.C.
[42] Shono, K., Cadaweng, E. A., & Durst, P. B. (2007). Application of Assisted Natural Regeneration to Restore Degraded Tropical Forest Lands. Restoration Ecology, 15, 620-626.
http://dx.doi.org/10.1111/j.1526-100X.2007.00274.x
[43] Takahashi, A., Shibata, M., & Shimada, T. (2011). Variation in Seed Production Schedule Among Individual Trees of a Deciduous Oak Species Quercus serrata: Its Relation to Seed Characteristics. Plant Ecology, 212, 1527-1535.
http://dx.doi.org/10.1007/s11258-011-9928-9
[44] Thadani, R., & Ashton, P. M. S. (1995). Regeneration of Bank Oak (Quercus leucotrichophora A. Camus) in the Central Himalaya. Forest Ecology and Management, 78, 217-224. http://dx.doi.org/10.1016/0378-1127(95)03561-4
[45] Valencia-Avalos, S. (2004). Diversidad del Género Quercus (Fagaceae) en México. Revista de la Sociedad Botánica de México, 75, 33-53.
[46] Vázquez-Yanez, C., Batis Munoz, A. I., Alcocer Silva, M. I., Gual-Díaz, M., & Sánchez-Dirzo, C. (1999). árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. México, D.F.: Reporte técnico del proyecto J084. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad e Instituto de Ecología, UNAM.
[47] Vieira, D. L. M., & Scariot, A. (2006). Principles of Natural Regeneration of Tropical Dry Forests for Restoration. Restoration Ecology, 14, 11-20. http://dx.doi.org/10.1111/j.1526-100X.2006.00100.x
[48] Willan, R. L. (1985). A Guide to Forest Feed Handling. FAO Forestry Paper. FAO, Rome, 20/2.
[49] Xiao, Z., Harris, M. K., & Zhang, Z. (2007). Acorn Defenses to Herbivory from Insects: Implications for the Joint Evolution of Resistance, Tolerance and Escape. Forest Ecology and Management, 238, 302-308.
http://dx.doi.org/10.1016/j.foreco.2006.10.024
[50] Yi, X. F., & Yang, Y. Q. (2010). Large Acorns Benefit Seedling Recruitment by Satiating Weevil Larvae in Quercus aliena. Plant Ecology, 209, 291-300. http://dx.doi.org/10.1007/s11258-010-9730-0
[51] Zavala-Chávez, F. (2004). Desecación de Bellotas y su Relación con la Viabilidad en Nueve Especies de Encinos Mexicanos. Ciencia Ergo Sum, 11, 177-185
[52] Zavala-Chávez, F., & García-Moya, E. (1997). Plántulas y Rebrotes en la Regeneración de Encinos en la Sierra de Pachuca, Hidalgo. Agrociencia, 31, 323-329.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.