Share This Article:

Comparative Response of CRL-11372 Cells to Surface Roughness and Crystalline Structure of the Surfaces Developed by Sandblasting, Etching, and TiO2 Coating on Commercially Pure Ti Discs

Abstract Full-Text HTML XML Download Download as PDF (Size:12829KB) PP. 245-257
DOI: 10.4236/msa.2014.55029    2,783 Downloads   4,271 Views   Citations

ABSTRACT

The aim of this study was to evaluate the adhesion of human fetal osteoblast cells (CRL-11372) in vitro at 24 h on commercially pure titanium (cp Ti) metal surfaces’ crystalline structure and surface roughnesses that are modified by polishing, sand blasting (with alumina (Al2O3)), sand blasting and coating (with titanium oxide (TiO2)), and sand blasting and etching (with oxalic acid). Modified surfaces were characterized quantitatively by a non-contacting optical profilometer in terms of their Rz and Ra values and surface profile diagrams were obtained. These surfaces were characterized qualitatively by scanning electron microscope (SEM) micrographs. The crystalline structures of the coatings were characterized by X-ray diffraction (XRD). CRL-11372 cells were cultured for 24 h and evaluated for their mean total cell counts. Cell morphologies were examined by SEM micrographs. Data were compared by Kruskal-Wallis test followed by Post Hoc LSD test comparisons. SEM micrographs showed variations among the topographies of the surfaces and the morphologies of the cells adhered to these four different surfaces. Cell adhesion was affected by neither Ti chemical composition nor surface roughness within the Ra and Rz parameters used.

 

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yeniyol, S. , Kepenek, B. , Bilir, A. , Çakır, A. , Bölükbaşı, N. , Yeniyol, M. and Özdemir, T. (2014) Comparative Response of CRL-11372 Cells to Surface Roughness and Crystalline Structure of the Surfaces Developed by Sandblasting, Etching, and TiO2 Coating on Commercially Pure Ti Discs. Materials Sciences and Applications, 5, 245-257. doi: 10.4236/msa.2014.55029.

References

[1] West, J.D. and Oates, T.W. (2007) Identification of Stability Changes for Immediately Placed Dental Implants. The International Journal of Oral & Maxillofacial Implants, 22, 623-630.
[2] Payer, M., Kirmeier, R., Jakse, N., Wimmer, G., Wegscheider, W. and Lorenzoni, M. (2008) Immediate Provisional Restoration of XiVE® Screw-Type Implants in the Posterior Mandible. Clinical Oral Implants Research, 19, 160-165.
http://dx.doi.org/10.1111/j.1600-0501.2007.01268.x
[3] Abboud, M., Koeck, B., Stark, H., Wahl, G. and Paillon, R. (2005) Immediate Loading of Single-Tooth Implants in the Posterior Region. The International Journal of Oral & Maxillofacial Implants, 20, 61-68.
[4] Cooper, L., Felton, D.A., Kugelberg, C.F., Ellner, S., Chaffe, N., Molina, A.L., Moriarty, J.D., Paquette, D. and Palmqvist, U. (2001) A Multicenter 12-Month Evaluation of Single-Tooth Implants Restored 3 Weeks after 1-Stage surgery. The International Journal of Oral & Maxillofacial Implants, 16, 182-192.
[5] Schwartz, Z. and Boyan, B.D. (1994) Underlying Mechanisms at the Bone-Biomaterial Interface. Journal of Cellular Biochemistry, 56, 340-347. http://dx.doi.org/10.1002/jcb.240560310
[6] Orsini, G., Assenza, B., Scarano, A., Piattelli, M. and Piattelli, A. (2000) Surface Analysis of Machined versus Sandblasted and Acid-Etched Titanium Implants. The International Journal of Oral & Maxillofacial Implants, 15, 779-784.
[7] Masaki, C., Schneider, G.B., Zaharias, R., Seabold, D. and Stanford, C. (2005) Effects of Implant Surface Microtopography on Osteoblast Gene Expression. Clinical Oral Implants Research, 16, 650-656.
http://dx.doi.org/10.1111/j.1600-0501.2005.01170.x
[8] Lim, Y.J., Oshida, Y., Andres, C.J. and Barco, M.T. (2001) Surface Characterizations of Variously Treated Titanium Materials. The International Journal of Oral & Maxillofacial Implants, 16, 333-342.
[9] Müeller, W.D., Gross, U., Fritz, T., Voigt, C., Fischer, P., Berger, G., Rogaschewski, S. and Lange, K.P. (2003) Evaluation of the Interface between Bone and Titanium Surfaces Being Blasted by Aluminium Oxide or Bioceramic Particles. Clinical Oral Implants Research, 14, 349-356.
http://dx.doi.org/10.1034/j.1600-0501.2003.00791.x
[10] Mustafa, K., Wroblewski, J., Hultenby, K., Lopez, B.S. and Arvidson, K. (2000) Effects of Titanium Surfaces Blasted with TiO2 Particles on the Initial Attachment of Cells Derived from Human Mandibular Bone. A Scanning Electron Microscopic and Histomorphometric Analysis. Clinical Oral Implants Research, 11, 116-128.
http://dx.doi.org/10.1034/j.1600-0501.2000.011002116.x
[11] Cooper, L.F., Masuda, T., Whitson, S.W., Yliheikkilä, P. and Felton, D.A. (1999) Formation of Mineralizing Osteoblast Cultures on Machined, Titanium Oxide Grit-Blasted, and Plasma-Sprayed Titanium Surfaces. The International Journal of Oral & Maxillofacial Implants, 14, 37-47.
[12] Ronold, H.J., Lyngstadaas, S.P. and Ellingsen, J.E. (2003) A Study on the Effect of Dual Blasting with TiO2 on Titanium Implant Surfaces on Functional Attachment in Bone. Journal of Biomedical Materials Research Part A, 67, 524530. http://dx.doi.org/10.1002/jbm.a.10580
[13] Ronold, H.J. and Ellingsen, J.E. (2002) Effect of Micro-Roughness Produced by TiO2 Blasting-Tensile Testing of Bone Attachment by Using coin-Shaped Implants. Biomaterials, 23, 4211-4219.
http://dx.doi.org/10.1016/S0142-9612(02)00167-9
[14] Ivanoff, C.J., Hallgren, C., Widmark, G., Sennerby, L. and Wennerberg, A. (2001) Histologic Evaluation of the Bone Integration of TiO2 Blasted and Turned Titanium Microimplants in Humans. Clinical Oral Implants Research, 12, 128-134. http://dx.doi.org/10.1034/j.1600-0501.2001.012002128.x
[15] Lange, R., Lüthen, F., Beck, U., Rychly, J., Baumann, A. and Nebe, B. (2002) Cell-Extracellular Matrix Interaction and Physico-Chemical Characteristics of Titanium Surfaces Depend on the Roughness of the Material. Biomolecular Engineering, 19, 255-261. http://dx.doi.org/10.1016/S1389-0344(02)00047-3
[16] LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D. and LeGeros, J.P. (2003) Biphasic Calcium Phosphate Bioceramics: Preparation, Properties and Applications. Journal of Materials Science: Materials in Medicine, 14, 201-209.
http://dx.doi.org/10.1023/A:1022872421333
[17] Citeau, A., Guicheux, J., Vinatier, C., Layrolle, P., Nguyen, T.P., Pilet, P. and Daculsi, G. (2005) In Vitro Biological Effects of Titanium Rough Surface Obtained by Calcium Phosphate Grid Blasting. Biomaterials, 26, 157-165.
http://dx.doi.org/10.1016/j.biomaterials.2004.02.033
[18] Mazor, Z. and Cohen, D.K. (2003) Preliminary 3-Dimensional Surface Texture Measurement and Early Loading Results with a Microtextured Implant Surface. The International Journal of Oral & Maxillofacial Implants, 18, 729-738.
[19] Novaes Jr., A.B., Souza, S.L., de Oliveira, P.T. and Souza, A.M. (2002) Histomorphometric Analysis of the Bone-Implant Contact Obtained with 4 Different Implant Surface Treatments Placed Side by Side in the Dog Mandible. The International Journal of Oral & Maxillofacial Implants, 17, 377-383.
[20] Marinho, V.C., Celletti, R., Bracchetti, G., Petrone, G., Minkin, C. and Piattelli, A. (2003) Sandblasted and AcidEtched Dental Implants: A Histologic Study in Rats. The International Journal of Oral & Maxillofacial Implants, 18, 75-81.
[21] Anselme, K. and Bigerelle, M. (2005) Topography Effects of Pure Titanium Substrates on Human Osteoblast LongTerm Adhesion. Acta Biomaterialia, 1, 211-222.
http://dx.doi.org/10.1016/j.actbio.2004.11.009
[22] Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P. and Landolt, D. (2004) Time-Dependent Morphology and Adhesion of Osteoblastic Cells on Titanium Model Surfaces Featuring Scale-Resolved Topography. Biomaterials, 25, 2695-2711.
http://dx.doi.org/10.1016/j.biomaterials.2003.09.111
[23] Cho, S.A. and Park, K.T. (2003) The Removal Torque of Titanium Screw Inserted in Rabbit Tibia Treated by Dual Acid Etching. Biomaterials, 24, 3611-3617. http://dx.doi.org/10.1016/S0142-9612(03)00218-7
[24] Cordioli, G., Majzoub, Z., Piattelli, A. and Scarano, A. (2000) Removal Torque and Histomorphometric Investigation of 4 Different Titanium Surfaces: An Experimental Study in the Rabbit Tibia. International Journal of Oral & Maxillofacial Implants, 15, 668-674.
[25] Thull, R. and Grant, D. (2001) Physical and Chemical Vapor Deposition and Plasma-Assisted Techniques for Coating Titanium. In: Brunette, D.M., Tengvall, P., Textor, M. and Thomsen, P., Eds., Titanium in Medicine, Springer-Verlag Berlin Heidelberg, New York, 283-341. http://dx.doi.org/10.1007/978-3-642-56486-4_10
[26] Scotchford, C.A., Ball, M., Winkelmann, M., Vörös, J., Csucs, C., Brunette, D.M., Danuser, G. and Textor, M. (2003) Chemically Patterned, Metal-Oxide-Based Surfaces Produced by Photolithographic Techniques for Studying Proteinand Cell-Interactions. II: Protein Adsorption and Early Cell Interactions. Biomaterials, 24, 1147-1158.
http://dx.doi.org/10.1016/S0142-9612(02)00488-X
[27] Araújo, N.S., Jaeger, R.G., Todescan, F.F., Jaeger, M.M.M. and Groll, W. (2001) Cell Culture Test for Assessing Attachment and Proliferation on Titanium Dental Implants with Modified Surfaces. Revista da Pós-Graduação, 8, 103-109.
[28] Schmaltz, G. (1997) Concepts in Biocompatibility Testing of Dental Restorative Materials. Clinical Oral Investigations, 1, 154-162. http://dx.doi.org/10.1007/s007840050027
[29] Eisenbarth, E., Linez, P., Biehl, V., Velten, D., Breme, J. and Hildebrand, H.F. (2002) Cell Orientation and Cytoskeleton Organisation on Ground Titanium Surfaces. Biomolecular Engineering, 19, 233-237.
http://dx.doi.org/10.1016/S1389-0344(02)00028-X
[30] Eisenbarth, E., Velten, D., Schenk-Meuser, K., Linez, P., Biehl, V., Duschner, H., Breme, J. and Hildebrand, H. (2002) Interactions between Cells and Titanium Surfaces. Biomolecular Engineering, 19, 243-249.
http://dx.doi.org/10.1016/S1389-0344(02)00032-1
[31] Yang, Y., Tian, J., Deng, L. and Ong, J.L. (2002) Morphological Behavior of Osteoblast-Like Cells on Surface-Modified Titanium in Vitro. Biomaterials, 23, 1383-1389. http://dx.doi.org/10.1016/S0142-9612(01)00259-9
[32] Shibata, Y., Hosaka, M., Kawai, H. and Miyazaki, T. (2002) Glow Discharge Plasma Treatment of Titanium Plates Enhances Adhesion of Osteoblast-Like Cells to the Plates through the Integrin-Mediated Mechanism. International Journal of Oral & Maxillofacial Implants, 17, 771-777.
[33] Matsuura, T., Hosokawa, R., Okamoto, K., Kimoto, T. and Akagawa, Y. (2000) Diverse Mechanisms of Osteoblast Spreading on Hydroxyapatite and Titanium. Biomaterials, 21, 1121-1127.
http://dx.doi.org/10.1016/S0142-9612(99)00264-1
[34] Schmalz, G. (1994) Use of Cell Cultures for Toxicity Testing of Dental Materials-Advantages and Limitations. Journal of Dentistry, 22, S6-S11. http://dx.doi.org/10.1016/0300-5712(94)90032-9
[35] Yao, C., Perla, V., Mc Kenzie, J.L., Slamovich, E.B. and Webster, T.J. (2005) Anodized Ti and Ti6Al4V Possessing Nanometer Surface Features Enhances Osteoblast Adhesion. Journal of Biomedical Nanotechnology, 1, 68-73.
http://dx.doi.org/10.1166/jbn.2005.008
[36] Schwartz, J., Avaltroni, M.J., Danahy, M.P., Silverman, B.M., Hanson, E.L., Schwarzbauer, J.E., Midwood, K.S. and Gawal, E.S. (2003) Cell Attachment and Spreading on Metal Implant Materials. Materials Science and Engineering: C, 23, 395-400. http://dx.doi.org/10.1016/S0928-4931(02)00310-7
[37] Cooper, L.F. (1998) Biologic Determinants of Bone Formation for Osseointegration: Clues for Future Clinical Improvements. Journal of Prosthetic Dentistry, 80, 439-449. http://dx.doi.org/10.1016/S0022-3913(98)70009-5
[38] Sammons, R.L., Lumbikanonda, N., Gross, M. and Chantzler, P. (2005) Comparison of Osteoblast Spreading on Microstructured Dental Implant Surfaces and Cell Behaviour in an Explant Model of osseointegration. A Scanning Electron Microscopy Study. Clinical Oral Implants Research, 16, 657-666.
http://dx.doi.org/10.1111/j.1600-0501.2005.01168.x
[39] Ramires, P.A., Giuffrida, A. and Milella, E. (2002) Three-Dimensional Reconstruction of Confocal Laser Microscopy Images to Study the Behaviour of Osteoblastic Cells Grown on Biomaterials. Biomaterials, 23, 397-406.
http://dx.doi.org/10.1016/S0142-9612(01)00118-1
[40] Yliheikkila, P.K., Felton, D.A., Whitson, S.W., Ambrose, W.W., Uoshima, K. and Cooper, L.F. (1995) Correlative Microscopic Investigation of the Interface between Titanium Alloy and the Osteoblast-Osteoblast Matrix Using Mineralizing Cultures of Primary Fetal Bovine Mandibular Osteoblasts. International Journal of Oral & Maxillofacial Implants, 10, 655-665.
[41] Bowers, K.T., Keller, J.C., Randolph, B.A., Wick, D.G. and Michaels, C.M. (1992) Optimization of Surface Micromorphology for Enhanced Osteoblast Responses in Vitro. International Journal of Oral & Maxillofacial Implants, 7, 302-310.
[42] Knabe, C., Klar, F., Fitzner, R., Radlanski, R.J. and Gross, U. (2002) In Vitro Investigation of Titanium and Hydroxyapatite Dental Implant Surfaces Using a Rat Bone Marrow Stromal Cell Culture System. Biomaterials, 23, 3235-3245.
http://dx.doi.org/10.1016/S0142-9612(02)00078-9
[43] Anselme, K. and Bigerelle, M. (2005) Topography Effects of Pure Titanium Substrates on Human Osteoblast LongTerm Adhesion. Acta Biomaterialia, 1, 211-222.
http://dx.doi.org/10.1016/j.actbio.2004.11.009
[44] Bagambisa, F.B., Joos, U. and Schilli, W. (1990) Interaction of Osteogenic Cells with Hydroxylapatite Implant Materials in Vitro and in Vivo. International Journal of Oral & Maxillofacial Implants, 5, 217-226.
[45] Lumbikanonda, N. and Sammons, R. (2001) Bone Cell Attachment to Dental Implants of Different Surface Characteristics. International Journal of Oral & Maxillofacial Implants, 16, 627-636.
[46] Wennerberg, A., Albrektsson, T. and Andersson, B. (1996) Bone Tissue Response to Commercially Pure Titanium Implants Blasted with Fine and Coarse Particles of Aluminum Oxide. International Journal of Oral & Maxillofacial Implants, 11, 38-45.
[47] Nebe, B., Luthen, F., Lange, R., Becker, P., Beck, U. and Rychly, J. (2004) Topography-Induced Alterations in Adhesion Structures Affect Mineralization in Human Osteoblasts on Titanium. Materials Science and Engineering: C, 24, 619-624. http://dx.doi.org/10.1016/j.msec.2004.08.034
[48] Wennerberg, A., Ide-Ektessabi, A., Hatkamata, S., Sawase, T., Johansson, C., Albrektsson, T., Martinelli, A., Södervall, U. and Odelius, H. (2004) Titanium Release from Implants Prepared with Different Surface Roughness. Clinical Oral Implants Research, 15, 505-512.
http://dx.doi.org/10.1111/j.1600-0501.2004.01053.x
[49] Mustafa, K., Wennerberg, A., Wroblewski, J., Hultenby, K., Lopez, B.S. and Arvidson, K. (2001) Determining Optimal Surface Roughness of TiO2 Blasted Titanium Implant Material for Attachment, Proliferation and Differentiation of Cells Derived from Human Mandibular Alveolar Bone. Clinical Oral Implants Research, 12, 515-525.
http://dx.doi.org/10.1034/j.1600-0501.2001.120513.x
[50] Lauer, G., Wiedmann-Al-Ahmad, M., Otten, J.E., Hubner, U., Schmelzeisen, R. and Schilli, W. (2001) The Titanium Surface Texture Effects Adherence and Growth of Human Gingival Keratinocytes and Human Maxillar OsteoblastLike Cells in Vitro. Biomaterials, 22, 2799-2809. http://dx.doi.org/10.1016/S0142-9612(01)00024-2
[51] Rosa, A.L. and Beloti, M.M. (2003) Rat Bone Marrow Cell Response to Titanium and Titanium Alloy with Different Surface Roughness. Clinical Oral Implants Research, 14, 43-48.
http://dx.doi.org/10.1034/j.1600-0501.2003.140106.x
[52] Zreiqat, H. and Howlett, C.R. (1999) Titanium Substrata Composition Influences Osteoblastic Phenotype: In Vitro Study. Journal of Biomedical Materials Research, 47, 360-366.
http://dx.doi.org/10.1002/(SICI)1097-4636(19991205)47:3<360::AID-JBM10>3.0.CO;2-K
[53] Anselme, K., Linez, P., Bigerelle, M., Le Maguer, D., Le Maguer, A., Hardouin, P., Hildebrand, H.F., Iost, A. and Leroy, J.M. (2000) The Relative Influence of the Topography and Chemistry of TiAl6V4 Surfaces on Osteoblastic Cell Behaviour. Biomaterials, 21, 1567-1577. http://dx.doi.org/10.1016/S0142-9612(00)00042-9
[54] Ahmad, M., Gawronski, D., Blum, J., Goldberg, J. and Gronowicz, G. (1999) Differential Response of Human Osteoblast-Like Cells to Commercially Pure (cp) Titanium Grades 1 and 4. Journal of Biomedical Materials Research, 46, 121-131.
http://dx.doi.org/10.1002/(SICI)1097-4636(199907)46:1<121::AID-JBM14>3.0.CO;2-P
[55] Blake, D.M., Maness, P.C., Huang, Z., Wolfrum, E.J., Huang, J. and Jacoby, W.A. (1999) Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells. Separation & Purification Reviews, 28, 1-50. http://dx.doi.org/10.1080/03602549909351643

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.