Investigating Double-Regime Crossover in Y1Ba2Cu3 - xRxO7 - δ Superconductors


The effect of Pr and Gd doping on the transport properties of Cu-deficient YBCO superconductors has been studied. Two series of Y1Ba2Cu3 - xRxO7 - δ, where R = Pr or Gd, were prepared by the conventional solid-state reaction technique. Resistance measurements showed a suppression of Tc with increasing of Pr- and Gd-contents in addition to a normal-state metal-to-insulator transition. Moreover, a superconductor-to-insulator transition has been observed at ambient pressure for temperatures less than 50 K for Pr with x = 0.3 and for Gd with x > 0.3. The overall complex behaviours of the resistivity data have been preliminary explained in terms of localization of charge carriers, structural disorders, and magnetic ordering of magnetic moments.

Share and Cite:

Badr, M. , El-Deen, L. , El-Hofy, M. and Haswa, A. (2014) Investigating Double-Regime Crossover in Y1Ba2Cu3 - xRxO7 - δ Superconductors. Crystal Structure Theory and Applications, 3, 30-37. doi: 10.4236/csta.2014.31004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Jamadar, T.A. and Ghosh, A.K. (2009) Metal to Insulator Transition in Mn Substituted Underdoped NdBa2Cu3O7-y: Evidence of Strong Charge Localization. Physica C, 469, 1971-1976.
[2] Babu, T.G.N. and Greaves, C. (1993) Critical Hole Density for Superconductivity in Sr-Containing Phases Related to YBa2Cu3O7: Structure, Superconductivity and Cation Substitutions in YSr2Cu2.8Cr0.2O7. Physica C, 207, 44-50.
[3] Skakle, J.M.S. (1998) Crystal Chemical Substitutions and Doping of YBa2Cu3Ox and Related Superconductors. Materials Science and Engineering: R: Reports, 23, 1-40.
[4] Tarascon, J.M., Greene, L.H., Barboux, P., McKinnon, W.R. and Hull, G.W. (1987) 3d-Metal Doping of the High-Temperature Superconducting Perovskites La-Sr-Cu-O and Y-Ba-Cu-O. Physical Review B, 36, 8393-8400.
[5] Mendels, P., Bobroff, J., Collin, G., Alloul, H., Gabay, M., Marucco, J.F., Blanchard, N. and Grenier, B. (1999) Normal-State Magnetic Properties of Ni and Zn Substituted in YBa2Cu3 O6 +x: Hole-Doping Dependence. Europhysics Letters, 46, 678-684.
[6] Tarascon, J.M., Barboux, P., Miceli, P.F., Greene, L.H., Hull, G.W., Eibschutz, M. and Sunshine, S.A. (1988) Structural and Physical Properties of the Metal (M) Substituted YBa2 Cu3-xMxO7-y Perovskite. Physical Review B, 37, 7458-7469.
[7] Xiao, G., Streitz, F.H., Gavrin, A. and Chien, C.L. (1988) Superconductivity and Magnetism in Transition Element Substituted YBa2Cu3O7 Compounds. Journal of Applied Physics, 63, 4196.
[8] Xiao, G., Streitz, F.H., Gavrin, A., Du, Y.W. and Chien, C.L. (1987) Effect of Transition-Metal Elements on the Superconductivity of Y-Ba-Cu-O. Physical Review B, 35, 8782-8784.
[9] Kistenmacher, T.J. (1988) Substitution for Copper in YBa2 Cu3Oy: The First 3%. Physical Review B, 38, 8862-8867.
[10] Goldschmidt, D., Direktovitch, Y., Knizhnik, A. and Eckstein, Y. (1996) Similar Depression of Tc by Zn and Ni Impurities in1:2:3 (Ca0.4La0.6)(Ba1.35La0.65)(Cu1-zMz)3Oy. Physical Review B, 54, 13348-13351.
[11] Garcia, S., Cobas, R., Musa, J.E. and Baggio-Saitovitch, E.M. (2000) Normal-State Behavior of the Resistivity in the Superconducting YBa2(Cu1-xLix)3O7-x System: An Evidence of Scattering by the Spin Fluctuations. Physica C, 341, 1895-1896.
[12] Ito, T., Takagi, H., Ishibashi, S., Ido, T. and Uchida, S. (1991) Normal-State Conductivity between Cupric Oxide Planes in Copper Oxide Superconductors. Nature, 350, 596-598.
[13] Beschoten, B., Quitmann, C., Kelley, R., Onellion, M. and Güntherodt, G. (1996) Metal-Insulator Transition and Electronic Structure in Pr-Doped Bi2Sr2(Caz Pr1 -z)Cu2O8+y. Physica B, 223, 519-521.
[14] Tarascon, J.-M., Barboux, P. and Hull, G.W. (1989) Bismuth Cuprate High-Tc Superconductors Using Cationic Substitution. Physical Review B, 39, 4316-4326.
[15] Clayhold, J., Hagen, S.J. and Ong, N.P. (1989) Approaching the Mott-Hubbard Insulator in the 85-K Superconductor Bi2(Sr,Ca)3Cu2O8+d by Doping With Tm. Physical Review B, 39, 7320-7323.
[16] Akhavan, M. (1995) Normal Electrical Resistivity of the Superconductor-Insulator d1-xPrxBa2Cu3O7-y (0≤x≤1) System. Physica C, 250, 25-29.
[17] Tomkowicz, Z., Lunkenheimerb, P., Knebelb, G., Balandac, M., Pacynac, A.W. and Zaleskid, A.J. (2000) Insulator-Metal Transition by the Substitution of Ho, Y or Ca for Pr in PrBa2Cu3O7-δ. Physica C, 331, 45-56.
[18] Ando, Y., Boebinger, G.S., Passner, A., Wang, N.L., Geibel, C., Steglich, F., Kimura, T., Okuya, M., Shimoyama, J., Kishio, K., Tamasaku, K., Ichikawa, N. and Uchida, S. (1997) Low-Temperature Normal-State Resistivity of High-Tc Cuprates. Physica C, 282, 240-243.
[19] Prabhakaran, D. and Subramanian, C. (1997) Metal-Insulator Transition in the Pr Substituted Bi-2212 Bulk Textured Crystals. Physica C, 291, 73-78.
[20] Chattopadhyay, M.K., Ghatak, S.K. and Dey, T.K. (1997) Metal-Insulator Transition in YBa2-xCaxCu3O7-δ System. Physica C, 281, 211-217.
[21] Cao, X.W., Tang, Y.J. and Ho, J.C. (1996) Superconducting Tc and Normal-State Resistivity in Nd1-xPrxBa2Cu3O7-δ System. Physica C: Superconductivity, 259, 361-364.
[22] Semba, K., Matsuda, A. and Mukaida, M. (2000) Carrier-Concentration-Drivensuperconductor-to-Insulator Transition in YBa2Cu3O6+x. Physica B: Condensed Matter, 281-282, 904-905.
[23] Li, X., Sun, X., Wu, W., Chen, Q., Shi, L., Zhang, Y., Kotaka, Y. and Kishio, K. (1997) Variations of Normal State Resistivity and Cu2+ Localized Spin Moment in the Single Crystal Bi2Sr2 CaCU2O8+x. Physica C: Superconductivity, 279, 241-245.
[24] Fujita, T., Hori, J., Iwata, S., Yoshino, Y., Kurisaki, H., Goko, T., Yamane, K. and Nakamura, F. (2001) Superconductor-Insulator Transition in Under-Doped Cuprates. Physica C: Superconductivity, 364-365, 274-277.
[25] Goldman, A.M. (2003) Superconductor-Insulator Transitions in the Two-Dimensional Limit. Physica E: Low-Dimensional Systems and Nanostructures, 18, 1-6.
[26] M’chirgui, A., Zouaoui, M., Ben Azzouz, F., Yangui, B. and Ben Salem, M. (2003) Electron Localization Induced by Grain Boundary Disorder in the Normal State of High-Tc Superconductors. Physica C: Superconductivity, 125, 71-76.
[27] Martin, J.D. (2005) Using XPowder: A Software Package for Powder X-Ray Diffraction Analysis.
[28] Ferrell, D., Williams, C., Wolf, S., Bansel, N. and Kogan, V. (1988) Experimental Evidence for a Transverse Magnetization of the Abrikosov Lattice in Anisotropic Superconductors. Physical Review Letters, 61, 2805-2805.
[29] Mandal, P., Poddar, A., Ghosh, B. and Choudhury, P. (1991) Variation of Tc and Transport Properties with Carrier Concentration in Y- and Pb-Doped Bi-Based Superconductors. Physical Review B, 43, 131 02-13111.
[30] Chang, B.C., Yang, C.Y., Hsu, Y.Y. and Ku, H.C. (2007) Origin of Metal-Insulator Transition in the Weak-Ferromagnetic Superconductor System RuSr2RCu2O8 (R = Rare Earths). Physica C: Superconductivity, 460-462, 503-505.
[31] Ahn, C., Gariglio, S., Paruch, P., Tybell, T., Antognazza, L. and Triscone, J. (1999) Electrostatic Modulation of Superconductivity in Ultrathin GdBa2Cu3O7-x Films. Science, 248, 1152-1155.
[32] Shaltiel, D., Bezalel, M., Golosovsky, M., Kwok, W.K. and Fendrich, J.A. (1999) Induced Microwave Absorption by Magnetic Modulation in Untwinned and Twinned YBaCuO Crystals and Its Comparison with Resistivity Measurements. Physica C: Superconductivity, 315, 23-35.
[33] Kobayashi, H., Akutsu, H., Ojima, E., Sato, A., Tanaka, H., Kobayashi, A. and Cassoux, P. (1999) Supercondutor-to-Insulator Transition of λ-BETS2FexGa1-xCl4. Synthetic Metals, 103, 1837-1838.
[34] Durrell, J.H., Eom, C.-B., Gurevich, A., Hellstrom, E.E., Tarantini, C., Yamamoto, A. and Larbalestier, D.C. (2011) The Behavior of Grain Boundaries in the Fe-Based Superconductors. Reports on Progress in Physics, 74, 124511-124549.
[35] Ishikawa, M. and Fischer, Ø. (1977) Destruction of Superconductivity by Magnetic Ordering in Ho1.2Mo6S8. Solid State Communications, 23, 37-39.
[36] Fertig, W.A., Johnston, D.C., DeLong, L.E., McCallum, R.W. and Maple, M.B. (1977) Destruction of Superconductivity at the Onset of Long-Range Magnetic Order in the Compound ErRh4B4. Physical Review Letters, 38, 987-990.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.