Agronomic Use of Slurry from Anaerobic Digestion of Agroindustrial Residues: Effects on Crop and Soil


In a greenhouse experiment we evaluated the application of slurry generated by a biogas reactor of agroindustrial residues. The objectives of this study were to determine the response to slurry application on dry matter production and nutrients absorption of Setaria italica (setaria), and to evaluate the effect of the slurry on soil properties. Two soils, of different texture, were mixed either with slurry or with diammonium phofsphate (DAP) at 0, 80, and160 kgN ha-1 equivalent rates. The setaria was harvested 68 days after planting, and separated into leaves plus stems, ears, and roots. Total biomass and content of N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn were determined in each fraction. In the soil we determined pH, electric conductivity (EC), organic C, available P, mineral N, and exchangeable cations. Although the biomass produced and the amounts of nutrients absorbed were different in the two soils, in both of them setaria responded to the slurry application. The amounts of N absorbed from slurry and DAP were similar, indicating that the N from the slurry was readily available. The slurry application also increased the absorption of other macro and micro nutrients (P, Ca, Mg, and Zn). No significant changes in soil exchangeable cations, pH, and EC were observed at setaria harvest. In the silty soil the crop almost depleted the mineral N in all treatments, but in the sandy soil large amounts were left, especially in the treatments with slurry. This fact highlights the importance of a careful dosage of this soil amendment, to avoid the excess of mineral N, which is potential pollutant for the environment. It can be concluded that the use of slurry from the reactor had a positive effect on the nutrients availability, without negative effects on soil properties.

Share and Cite:

Pino, A. , Casanova, O. , Barbazán, M. , Mancassola, V. , Arló, L. , Borzacconi, L. and Passeggi, M. (2014) Agronomic Use of Slurry from Anaerobic Digestion of Agroindustrial Residues: Effects on Crop and Soil. Journal of Sustainable Bioenergy Systems, 4, 87-96. doi: 10.4236/jsbs.2014.41009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] García de Souza, M., Alliaume, F., Mancassola, V. and Dogliotti, S. (2011) Carbono Orgánico y Propiedades Físicas del Suelo en Predios Hortícolas del Sur de Uruguay. Agrociencia Uruguay, 15, 70-81.
[2] Passeggi, M., López, I. and Borzacconi, L. (2005) Assessment of the Energy Production from Biogas in Uruguay. II Congreso de Ingeniería Química del Mercosur y IV Congreso del MERCOSUR de Ingeniería de Procesos, Brazil.
[3] López, I., Passeggi, M., Boix, C., Barcia, R., Borzacconi, L. and Lieberman, L. (2006) Generación de Lodos y Evolución de la Biomasa de un Reactor UASB a Escala Real Tratando Efluentes de Maltería. XXX Congreso Interamericano de la Asociación de Ingeniería Sanitaria (AIDIS), Uruguay.
[4] Arthuson, V. (2009) Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land—Potential Benefits and Drawbacks. Energies, 2, 226-242.
[5] Silva, A., Ponce de León, J., Cavassa, R. and Reyes, W. (1992) Efecto de la Aplicación de Efluentes Orgánicos de Tambo sobre la Producción de Verdeos y Propiedades Físico-Químicas del Suelo. Notas Técnicas No 16, Facultad de Agronomía, Montevideo.
[6] La Manna, A., Mieres, J., Acosta, Y. and Torres, I. (2004) Utilización de Efluentes en Tambos. Resumen de Investigación. Actividades de difusión No 361, Resultados Experimentales en Lechería, INIA, Uruguay, 35-44.
[7] Barbazán, M., del Pino, A., Moltini, C., Hernández, J. and Rodríguez, J. (2011) Caracterización de Materiales Orgánicos Aplicados en Sistemas Agrícolas Intensivos de Uruguay. Agrociencia Uruguay, 15, 82-92.
[8] Mulvaney, R.L. (1996) Nitrogen Inorganic Forms. In: Sparks, D.L., et al., Eds., Methods of Soil Analysis. Part 3. Chemical Methods, ASA and SSSA, Madison, 1123-1184.
[9] Rhine, E.D., Sims, G.H., Mulvaney, R.L. and Pratt, E.J. (1998) Improving the Berthelot Reaction for Determining Ammonium in Soil Extracts and Water. Soil Science Society of America Journal, 62, 473-480.
[10] Bray, R.H. and Kurtz, L.T. (1945) Determinations of Total, Organic and Available Forms of Phosphorus in Soils. Soil Science, 59, 39-45.
[11] Isaac, R.A. and Kerber, J.D. (1971) Atomic Absorption and Flame Photometry: Techniques and Uses in Soil, Plant and Water Analysis. In: Walsh, L.M., Ed., Instrumental Methods for Analysis of Soil and Plant Tissues, SSSA, Madison, 17-37.
[12] Murphy, J. and Riley, J.P. (1962) A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Analytica Chimica Acta, 27, 31-36.
[13] Nelson, D.W. and Sommers, L.E. (1996) Total Carbon, Organic Carbon, and Organic Matter. In: Sparks, D.L., et al., Eds., Methods of Soil Analysis. Part 3. Chemical Methods, ASA and SSSA, Madison, 961-1010.
[14] Matsunaka, T., Sawamoto, T., Ishimura, H., Takakura, K. and Takekawa, A. (2006) Efficient Use of Digested Cattle Slurry from Biogas Plant with Respect to Nitrogen Recycling in Grassland. International Congress Series, 1293, 242-252.
[15] Nicholson, F.A., Chambers, B.J., Williams, J.R. and Unwin, R.J. (1999) Heavy Metal Contents of Livestock Feeds and Animal Manures in England and Wales. Bioresource Technology, 70, 23-31.
[16] del Pino, A., Casanova, O., Barbazán, M., Mancassola, V., Arló, L., Rodríguez, J., Borzacconi, L. and Passeggi, M. (2012) Caracterización y Evaluación de Biosólidos Producidos por Digestión Anaerobia de Residuos Agroindustriales. CI Suelo, 30, 129-136.
[17] Terhoedven-Urselmans, T., Scheller, E., Raubuch, M., Ludwig, B. and Georg Joergensen, R. (2009) CO2 Evolution and N Mineralization after Biogas Slurry Application in the Field and its Yield Effects on Spring Barley. Applied Soil Ecology, 42, 297-302.
[18] Stumpe, B., Werner, S., Jung, R., Heinze, S., Jüschke, E., Strippel, C. and Marshner, B. (2012) Organic Carbon Dynamics and Enzyme Activities in Agricultural Soils Amended with Biogas Slurry Liquid Manure and Sewage Sludge. Agricultural Science, 3, 104-113.
[19] Kuzyakov, Y., Friedel, J.K. and Stahr, K. (2000) Review of Mechanisms and Quantification of Priming Effects. Soil Biology & Biochemistry, 32, 1485-1498.
[20] Garg, R.N., Pathak, H., Das, D.K. and Tomar, R.K. (2005) Use of Flyash and Biogas Slurry for Improving Wheat Yields and Physical Properties of Soil. Environmental Monitoring and Assessment, 107, 1-9.
[21] Raghothama, K.G. (1999) Phosphate Acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.
[22] Ternouth, J.H. (1990) Phosphorus and Beef Production in Northern Australia. 3. Phosphorus in Cattle—A Review. Tropical Grasslands, 24, 159-169.
[23] Arienzo, M., Christen, E.W., Quayle, W. and Kumar, A. (2009) A Review of the Fate of Potassium in the Soil-Plant System after Land Application of Wastewaters. Journal of Hazardous Materials, 164, 415-422.
[24] Hemingway, R.G. and Parkins, J.J. (2001) Fertiliser Usage and the Mineral Requirements of Grazing Livestock. Proceedings 466, International Fertiliser Society, York, 1-36.
[25] Fangueiro, D., Chadwick, D., Dixon, L. and Bol, R. (2007) Quantification of Priming and CO2 Emission Sources Following the Application of Different Slurry Particle Size Fractions to Grassland Soil. Soil Biology & Biochemistry, 39, 2608-2620.
[26] Grigatti, M., Di Girolamo, G., Chincarini, R., Ciavatta, C. and Barbanti, L. (2011) Potential Nitrogen Mineralization, Plant Utilization Efficiency and Soil CO2 Emissions Following the Addition of Anaerobic Digested Slurries. Biomass and Bioenergy, 35, 4619-4629.
[27] Smith, J.L. and Doran, J.W. (1996) Measurement and Use of pH and Electrical Conductivity for Soil Quality Analysis. In: Doran, J.W. and Jones A.J. Eds., Methods for Assessing Soil Quality, SSSA Special Publication No 49, Madison, 169-185.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.