Geostatistical Methods for Lithological Aquifer Characterization and Groundwater Flow Modeling of the Catania Plain Quaternary Aquifer (Italy)

Abstract

Sedimentary heterogeneity conditions of Catania Plain quaternary aquifer (CPQA), the wider alluvial multi-aquifer system of Sicily, were rebuilt to simulate and quantify groundwater flow. Transition probabilities based on a Markov Chain (MC) and Sequential Indicator Simulation (SIS) are the structure-imitating simulators utilized for generating stochastic distributions of hydraulic conductivity fields of CPQA, basing on borehole data: plausible equiprobable solutions of the complex geological structure of the CPQA were simulated. This study highlights that the choice of geostatistical simulation method plays a fundamental role in predictive scenarios for groundwater resources managing of CPQA. Indeed, simulated characteristics of the sedimentary heterogeneity constituted the basis of finite difference models for simulating the groundwater flow of CPQA. In heterogeneous systems such as CPQA, SIS may be inadequate for reproducing the macrostructures. Instead, MC adequately reproduced spatial connection of lithofacies, representing a more realistic solution dealing to the proposed geological model of CPQA. MC and SIS models were utilized to both assess the uncertainty of the generated hydraulic conductivity fields of CPQA and predictions about its behavior under normal stress conditions induced by urbanization. The calibration of CPQA groundwater flow models based on MC and SIS simulations allowed to achieve a realistic feedback about the quality of the geostatistical reconstructions of the geological heterogeneity field.

Share and Cite:

Guastaldi, E. , Carloni, A. , Pappalardo, G. and Nevini, J. (2014) Geostatistical Methods for Lithological Aquifer Characterization and Groundwater Flow Modeling of the Catania Plain Quaternary Aquifer (Italy). Journal of Water Resource and Protection, 6, 272-296. doi: 10.4236/jwarp.2014.64032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ferrara, V. and Pappalardo, G. (2004) Intensive Exploitation Effect on the Alluvial Aquifer of the Catania Plain, Eastern Sicily, Italy. Geofísica Internacional, 43, 671-681.
[2] Ferrara, V., Pappalardo, G. and Rapisarda, F. (2007) Salinization Factors Affecting the Coastal Aquifers in Eastern Sicily. In: Pulido Bosh, A., Lòpez Getay, J.A. and Ramos Gonzalez, G., Eds., Los acuiferos costeros: Retos y soluciones (TIAC ’07), Almeira, 16-19 October 2007, Instituto Geològico y Minero de Espana, Serie Hidrogeologia y Aguas Subterraneas, Vol. 23, 105-116, Madrid.
[3] Ababou, R., McLaughlin, D., Gelhar, L.W. and Tompson, A.F.B. (1989) Numerical Simulation of Three-Dimensional Saturated Flow in Randomly Heterogeneous Porous Media. Transport in Porous Media, 4, 549-565.
[4] Webb, E.K. and Anderson, M.P. (1996) Simulation of Preferential Flow in Three-Dimensional, Heterogenous Conductivity Fields with Realistic Internal Architecture. Water Resources Research, 32, 533-545.
http://dx.doi.org/10.1029/95WR03399
[5] de Marsily, G., Delay, F., Teles, V. and Schafmeister, M.T. (1998) Some Current Methods to Represent the Heterogeneity of Natural Media in Hydrogeology. Hydrogeology Journal, 6, 115-130.
http://dx.doi.org/10.1007/s100400050138
[6] Scheibe, T.D. and Yabusaki, S. (1998) Scaling of Flow and Transport Behavior in Heterogeneous Groundwater Systems. Advances in Water Resources, 22, 223-238. http://dx.doi.org/10.1016/S0309-1708(98)00014-1
[7] Labolle, E. and Fogg, G. (2001) Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System. Transport in Porous Media, 42, 155-179. http://dx.doi.org/10.1023/A:1006772716244
[8] Fleckenstein, J.H., Neiswonger, R.G. and Fogg, G. (2006) River-Aquifer Interactions, Geologic Heterogeneity and Low Flow Management. Groundwater, 44, 837-852. http://dx.doi.org/10.1111/j.1745-6584.2006.00190.x
[9] Eaton, T. (2006) On the Importance of Geological Heterogeneity for Flow Simulation. Sedimentary Geology, 184, 187-201. http://dx.doi.org/10.1016/j.sedgeo.2005.11.002
[10] Koltermann, C.E. and Gorelik, S.M. (1996) Heterogeneity in Sedimentary Deposits: A Review of Structure-Imitating, Process-Imitating and Descriptive Approaches. Water Resources Research, 32, 2617-2658.
http://dx.doi.org/10.1029/96WR00025
[11] Lee, S.Y., Carle, S.F. and Fogg, G.E. (2007) Geologic Heterogeneity and a Comparison of Two Geological Models: Sequential Gaussian and Transition-Probability-Based Geostatistical Simulation. Advances in Water Resources, 30, 1914-1932. http://dx.doi.org/10.1016/j.advwatres.2007.03.005
[12] Gómez-Hernández, J.J. and Wen, X.H. (1998) To Be or Not to Be Multi-Gaussian? A Reflection on Stochastic Hydrogeology. Advances in Water Resources, 21, 47-61. http://dx.doi.org/10.1016/S0309-1708(96)00031-0
[13] Alabert, F.G. and Modot V. (1993) Stochastic Models of Reservoir Heterogeneity: Impact on Connectivity and Average Permeabilities. SEG Technical Program Expanded Abstracts, 340.
[14] Dell’Arciprete, D., Bersezio, R., Felletti, F., Giudici, M., Comunian, A. and Renard, P. (2012) Comparison of Three Geostatistical Methods for Hydrofacies Simulation: A Test on Alluvial Sediments. Hydrogeology Journal, 20, 299-311. http://dx.doi.org/10.1007/s10040-011-0808-0
[15] Carle, S.F. (1999) T-PROGS: Transition Probability Geostatistical Software. Version 2.1. University of California, Davis.
[16] Weissman, G.S., Carle, S.F. and Fogg, G.E. (1999) Three-Dimensional Hydrofacies Modeling Based on Soil Surveys and Transition Probability Geostatistics. Water Resources Research, 35, 1761-1770.
http://dx.doi.org/10.1029/1999WR900048
[17] Granati, C. (2007) Ricostruzione degli acquiferi della Bassa Pianura Friulana e simulazione di flusso con approccio stocastico (Reconstruction of aquifers of Southern Plain of Friuli region and stochastic flow simulation). Ph.D. Thesis, University of Udine, Udine.
[18] Lou, J. (1996) Transition Probability Approach to Statistical Analysis of Spatial Qualitative Variables in Geology. In: Forster, A. and Merriam, D.F., Eds., Geologic Modeling and Mapping, Plenum Press, New York, 281-299.
[19] Elfeki, A.M. and Dekking, F.M. (2001) A Markov Chain Model for Subsurface Characterization: Theory and Applications. Mathematical Geology, 33, 569-589. http://dx.doi.org/10.1023/A:1011044812133
[20] Li, W., Zhang, C., Burt, J.E., Zhu, A.X. and Feyen, J. (2004) Two-Dimensional Markov Chain Simulation of Soil Type Spatial Distribution. Soil Science Society of America Journal, 68, 1479-1490. http://dx.doi.org/10.2136/sssaj2004.1479
[21] Li, W.D. and Zhang, C.R. (2008) A Single-Chain-Based Multidimensional Markov Chain Model for Subsurface Characterization. Environmental and Ecological Statistics, 15, 157-174. http://dx.doi.org/10.1007/s10651-007-0045-9
[22] Li, W.D. (2006) Transiogram: A Spatial Relationship Measure for Categorical Data. International Journal of Geographical Information Science, 20, 693-699. http://dx.doi.org/10.1080/13658810600607816
[23] Pardo-Igúzquiza, E. and Dowd, P.A. (2005) Multiple Indicator Cokriging with Application to Optimal Sampling for Environmental Monitoring. Computers & Geosciences, 31, 1-13. http://dx.doi.org/10.1016/j.cageo.2004.08.006
[24] Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University, Oxford.
[25] Deutsch, C.V. and Journel, A.G. (1998) GSLIB: Geostatistical Software Library and User’s Guide. 2nd Edition, Oxford University Press, New York.
[26] Seifért, D. and Jensen, J.L. (1999) Sequential Indicator Simulation as a Tool in Reservoir Description: Issues and Uncertainties. Mathematical Geology, 31, 527-550. http://dx.doi.org/10.1023/A:1007563907124
[27] Pardo-Iguzquizaa, E. and Dowd, P.A. (2005) Multiple Indicator Cokriging with Application to Optimal Sampling for Environmental Monitoring. Computers & Geosciences, 31, 1-13. http://dx.doi.org/10.1016/j.cageo.2004.08.006
[28] Harbaugh, A., Banta, E., Hill, M. and McDonald, M. (2000) MODFOLW-2000, The US Geological Survey Modular Ground-Water Model. User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-File Report 00-92 U.S. Geological Survey, Reston.
[29] Lentini, F. (1982) The Geology of the Mt. Etna Basement. Memorie della Società Geologica Italiana, 23, 7-26.
[30] Ben-Avraham, Z., Boccaletti, M., Cello, G., Grasso, M., Lentini, F., Torelli, L. and Tortorici, L. (1990) Principali domini strutturali originatisi dalla collisione continentale neogenico-quaternaria nel Mediterraneo centrale (Main Structural Domains Deriving from Neogene-Quaternary Continental Collision in Central Mediterranean Sea). Memorie della Società Geologica Italiana, 45, 453-462.
[31] Lentini, F., Catalano, S. and Carbone, S. (1996) The External Thrust System in Southern Italy: A Target for Petroleum Exploration. Petroleum Geoscience, 2, 333-342. http://dx.doi.org/10.1144/petgeo.2.4.333
[32] Grasso, M. (1993) Pleistocene Structures along the Ionian Side of the Hyblean Plateau (SE Sicily): Implications for the Tectonic Evolution of the Malta Escarpment. UNESCO Reports in Marine Science, 58, 49-54, Paris.
[33] Torelli, L., Grasso, M., Mazzoldi, G. and Peis, D. (1998) Plio-Quaternary Tectonic Evolution and Structure of the Catania Foredeep, the Northern Hyblean Plateau and the Ionian Shelf (SE Sicily). Tectonophysics, 298, 209-221.
[34] Butler, R.W.H. and Grasso, M. (1993) Tectonic Controls on Base-Level Variations and Depositional Sequences within Thrust-Top and Foredeep Basins: Examples from the Neogene Thrust Belt of Central Sicily. Basin Research, 5, 137-151. http://dx.doi.org/10.1111/j.1365-2117.1993.tb00062.x
[35] Longhitano, S. and Colella, A. (2002) Stratigraphy and Basin-Fill Architecture of a Plio-Pleistocene Foredeep Basin (Catania Plain, Eastern Sicily): A Preliminary Synthesis. Geoacta, 1, 111-130.
[36] Francaviglia, A. (1962) L’imbasamento sedimentario dell’Etna e il Golfo preetneo. Bollettino Servizio Geologico Italiano, 81, 593-684.
[37] Wezel, F.C. (1967) I terreni quaternari del substrato dell’Etna (Quaternary sediments of Mt. Etna bedrock). Atti dell’Accademia Gioenia di Scienze Naturali, Catania, 6, 279-293.
[38] Lanzafame, G., Neri, M., Coltelli, M., Lodato, L. and Rust, D. (1997) North-South Compression in the Mt. Etna Region (Sicily): Spatial and Temporal Distribution. Acta Vulcanologica, 9, 121-133.
[39] Carbone, S., Lentini, F., Branca, S., Barbano, M.S., Ferrara, V. and Pappalardo, G. (2010) Note illustrative della Carta geologica d'Italia alla scala 1:50.000 Foglio 633 Paternò (Description of Geological Map of Italy at 1:50.000 scale, Sheet No. 633 “Paternò”). ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale SERVIZIO GEOLOGICO D’ ITALIA), Rome.
[40] ENI (1992) Acque dolci sotterranee: Inventario dei dati raccolti dall'AGIP durante la ricerca di idrocarburi in Italia. ENI Ente Nazionale Idrocarburi, Rome.
[41] Labaume, P., Bousquet, J.C. and Lanzafame, G. (1990) Early Deformations at a Submarine Compressive Front: The Quaternary Catania Foredeep South of Mt. Etna, Sicily. Tectonophysics, 177, 349-366.
[42] Accordi, B. and Francaviglia, A. (1960) La geologia del Bacino del Simeto (Geology of Simeto River Basin). Tecnica Agricola, 12, 221-244.
[43] Kieffer, G. (1971) Dépots et niveaux marins et fluviatiles de la région de Catane (Sicile). (Marine and Fluvial Deposits of Catania Area, Sicily). Méediterraneée, 2, 591-626. http://dx.doi.org/10.3406/medit.1971.1387
[44] Breusse, J. and Huot, G. (1954) Hydrogeological Survey in the Catania Area by Means of Electrical Soundings. Geophysical Prospecting, 2, 227-231.
[45] Bianchi, F., Carbone, S., Grasso, M., Invernizzi, G., Lentini, F., Longaretti, G., Merlini, S. and Mostardini, F. (1987) Sicilia orientale: Profilo geologico Nebrodi-Iblei (Eastern Sicily: Geological Profile of Nebrodi-Iblei Mountains Chain). Memorie della Società Geologica Italiana, 38, 429-458.
[46] Goodale, C.L., Aber, J.D. and Ollinger, S.V. (1998) Mapping Monthly Precipitation, Temperature and Solar Radiation for Ireland with Polynomial Regression and a Digital Elevation Model. Climate Research, 10, 35-49.
http://dx.doi.org/10.3354/cr010035
[47] Bianca, M., Monaco, C., Tortorici, L. and Cernobori, L. (1999) Quaternary Normal Faulting in Southeastern Sicily (Italy): A Seismic Source for the 1693 Large Earthquake. Geophysical Journal International, 139, 370-394.
http://dx.doi.org/10.1046/j.1365-246x.1999.00942.x
[48] Ferrara, V. (1999) Presentazione della carta di Vulnerabilità all’inquinamento dell'acquifero alluvionale della Piana di Catania (Sicilia NE). (Presentation of Vulnerability Map of Aquifer of Catania Alluvial Plain). Proceedings of 3rd National Conference on Protection and Management of Groundwater for the III Millenium, Parma, 13-15 October 1999, pp. 99-104
[49] Tortorici, G., De Guidi, G. and Sturiale, G. (2006) Evoluzione tettonica quaternaria del margine settentrionale del Plateau Ibleo (Sicilia sud-orientale). (Quaternary Tectonic evolution of Northern margin of Iblean Plateau, South-Eastern Sicily). Bollettino Società Geologica Italiana, 125, 21-37.
[50] Costa, N. (2008) Modello geologico-idrogeologico dell'acquifero della piana di Catania e valutazione delle risorse idriche sotterranee (Geological and Hydrogeological Model of Acquifer of Catania Plain and Groundwater Resources Evaluation). Ph.D. Thesis, University of Catania, Catania.
[51] Maji, R., Sudicky, E.A., Panday, S. and Teutsch, G. (2006) Transition Probability/Markov Chain Analysis of DNAPL Source Zone and Plumes. Groundwater, 44, 853-863. http://dx.doi.org/10.1111/j.1745-6584.2005.00194.x
[52] Ye, M. and Khaleel, R. (2008) A Markov Chain Model for Characterizing Medium Heterogeneity and Sediment Layering Structure. Water Resources Research, 44, 1-15. http://dx.doi.org/10.1029/2008WR006924
[53] Middleton, G.V. (1973) Johannes Walther’s Law of the Correlation of Facies. Geological Society of America Bulletin, 84, 979-987. http://dx.doi.org/10.1130/0016-7606(1973)84<979:JWLOTC>2.0.CO;2
[54] Goovaerts, P. (2000) Estimation or Simulation of Soil Properties? An Optimization Problem with Conflicting Criteria. Geoderma, 97, 165-186. http://dx.doi.org/10.1016/S0016-7061(00)00037-9
[55] Felletti, F., Bersezio, R. and Giudici, M. (2006) Geostatistical Simulation and Numerical Upscaling, to Model Ground-Water Flow in a Sandy-Gravel, Braided River, Aquifer Analogue. Journal of Sedimentary Research, 76, 1215-1229. http://dx.doi.org/10.2110/jsr.2006.091
[56] Geovariances (2010) ISATIS User’s Guide. Ecole des Mines & Geovariances. Geovariances, Avon.
[57] Civita, M. (2005) Idrogeologia applicata ed ambientale (Applied and Environmental Hydrogeology). Casa Editrice Ambrosiana, Milan.
[58] Cerbini, G. and Gorla, M. (2009) Idrogeologia applicata, principi metodi e misure (Applied Hydrogeology: Methods and Measures). Edizioni Geo-Impianti, Segrate, Milan.
[59] Spitz, K. and Moreno, J. (1996) A Practical Guide to Groundwater and Solute Transport Modeling. John Wiley & Sons, Inc., New York.
[60] MacDonald, M.G. and Harbaugh, A. (1988) A Modular Three Dimensional Finite-Difference Ground-Water Flow Model. Techniques of Water-Resources Investigations of the US Geological Survey, Vol. 6, Book 6, Ch. A1, US Government Printing Office, Washington DC.
[61] USDA-SCS (1985) National Engineering Handbook. Section 4-Hydrology. USDA-SCS, Washington DC.
[62] Turc, L. (1954) Le bilan d’eau des sols. Relation entre la précipitation, l'évaporation et l'écoulement. Annales Agronomiques, 5, 491-569.
[63] Webster, R. and Oliver, M.A. (2001) Geostatistics for Environmental Scientists (Statistics in Practice). John Wiley and Sons, Ltd., Chichester.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.