Evidence of Iron Mineralization Channels in the Messondo Area (Centre-Cameroon) Using Geoelectrical (DC & IP) Methods: A Case Study


A geophysical survey was conducted in the Kelle-Bidjocka village, Messondo subdivision, in the Centre Region, Cameroon. The data acquisition was made by combining Schlumberger profiling and electrical soundings along six (06) profiles of 1500 m in length for a total of 64 geoelectrical stations’ survey conducted through a variable mesh 100 m × 200 m, or 100 m × 300 m. The equipment used is the DC resistivimeter Syscal Junior 48 (Iris Instrument). Processing and modelling of field data are made by using the Res2Dinv, Qwseln and Surfer software. The investigation methods used are electrical resistivity (DC) and induced polarization (IP) methods. The analyses and interpretations have helped to highlight areas of weakness or conductive discontinuities (fractures, faults, shear zones, etc.) in Precambrian gneiss formations, sometimes undergoing weathering processes. They identify the weathering or mineralogical accumulation horizons, the most promising is a mineralization channel identified in the NE-SW direction. The highlighted mineralization is characterized by strong gradients of chargeability or polarization. Samples and other geological evidences observed in the area are used to associate the most polarizable structures with ferriferous formations. Weakly polarizable and particularly conductive backgrounds identified by the inverse pseudo-sections are thought to be sulphate minerals or groundwater targets for future hydrogeological studies.

Share and Cite:

Claude, N. , Théophile, N. , Patrick, A. and Crepin, K. (2014) Evidence of Iron Mineralization Channels in the Messondo Area (Centre-Cameroon) Using Geoelectrical (DC & IP) Methods: A Case Study. International Journal of Geosciences, 5, 346-361. doi: 10.4236/ijg.2014.53034.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Cornachia, M. and Dars, R. (1983) Un trait majeur du continent africain. Les Linéaments centrafricains du Cameroun au Golfe d’Aden. Bulletin de la Societe Geologique de France, 7, 102-109.
[2] Gouet, D.H., Ndougsa-Mbarga, T., Meying, A., Assembe, S.P. and Man-Mvele Pepogo, A.D. (2013) Gold Mineralization Channels Identification in the Tindikala-Boutou Area (Eastern-Cameroon) Using Geoelectrical (DC& IP) Methods: A Case Study. International Journal of Geosciences, 4, 643-655. http://dx.doi.org/10.4236/ijg.2013.43059
[3] Meying, A., Ndougsa Mbarga, T. and Manguelle-Dicoum, E. (2009) Evidence of Fractures from the Image of the Subsurface in the Akojolinga-Ayos Area (Cameroon) by Combining the Classical and the Bostick Approaches in the Interpretation of Audio-Magnetotelluric Data. Journal of Geology and Mining Research, 1, 159-171.
[4] Mvondo, H., Den-Brok, S.W.J. and Mvondo-Ondoa, J. (2003) Evidence for Symmetric Extension and Exhumation of the Yaoundé Nappe (Pan-African Fold Belt, Cameroon). Journal of African Earth Sciences, 35, 215-231.
[5] Mvondo, H., Owona, S., Mvondo-Ondoa, J. and Essono, J. (2007) Tectonic Evolution of the Yaoundé Segment of the Neoproterozoic Central African Orogenic Belt in Southern Cameroon. Canadian Journal of Earth Sciences, 44, 433-444. http://dx.doi.org/10.1139/e06-107
[6] Olinga, J.B., Mpesse, J.E., Minyem, D., Ngako, V., Ndougsa-Mbarga, T. and Ekodeck, G.E. (2010) The Awaé-Ayos Strike-Slip Shear Zones (Southern-Cameroon): Geometry, Kinematics and Significance in the Late Panafrican Tectonics. Neues Jahrbuch für Geologie und Palaontologie, 257, 1-11.
[7] Mbom-Abane, S. (1997) Investigation Géophysique en Bordure du Craton du Congo (région d’Abong-Mbang/ Akonolinga, Cameroun) et Implications Structurales. Thèse Doctorat d’Etat ès Sciences, Université de Yaoundé I, Fac. Sciences.
[8] Ndougsa-Mbarga, T., Meying, A., Bisso, D., Layou, D.Y., Sharma, K.K. and Manguelle-Dicoum, E. (2011) Audiomagnetotellurics (AMT) Soundings Based on the Bostick Approach and Evidence of Tectonic Features along the Northern Edge of the Congo Craton, in the Messamena/Abong-Mbang Area (Cameroon). Indian Geophysical Union, 15, 145-159.
[9] Ndougsa-Mbarga, T., Manguelle-Dicoum, E., Tabod, C.T. and Mbom-Abane, S. (2003) Modelisation d’anomalies gravimétriques dans la region de Mengueme-Akonolinga (Cameroun). Science, Technology and Development, 10, 67-74.
[10] Rolin, P. (1995) La Zone de Décrochement Panafricain des Oubanguides en République Centrafricaine. C.R. Academy Society, Paris.
[11] Seguin, M.K. (1971) La géophysique et les propriétés des roches. Les Presses de l’Université, Laval, 562 p.
[12] Seguin, M.K. (1974) The Use of Geophysical Methods in Permafrost Investigation: Iron Ore Deposits of the Central Part of the Labrador Trough, Northeastern Canada. Geoforum, 5, 55-67.
[13] Burger, R.H., Sheehan, F.A. and Jones, C.H. (2006) Introduction to Applied Geophysics: Exploring the Shallow Subsurface. Norton & Company, Inc., New York, 265-347.
[14] Sumner, J.S. (1976) Principles of Induced Polarization for Geophysical Exploration. Elsevier, Amsterdam, 227 p.
[15] Keary, P. and Brooks, M. (1991) An Introduction to Geophysical Exploration. 2nd Edition, Blackwell Scientific Publications, Oxford, 254 p.
[16] Parasnis, D.S. (1997) Principles of Applied Geophysics. 5th Edition, Chapman and Hall, London, 104-176.
[17] Tijani, M.N., Osinowo, O.O. and Ogedengbe, O. (2009) Mapping of Sub-Surface Fracture Systems Using Integrated Electrical Resistivity Profiling and VLF-EM Methods: A Case Study of Suspected Gold Mineralization. RMZ— Materials and Geoenvironment, 56, 415-436.
[18] Ward, S.H. (1990) Resistivity and Induced Polarization Methods. In: S. H. Ward, Ed., Geotechnical and Environmental Geophysics, 2nd Edition, Society of Exploration Geophysicists, Tulsa, 147-190.
[19] Bakkali, S. and Bouyalaoui, J. (2005) Essai d’optimisation de la capacité de retenue d’eau d’un lac par caractérisation géophysique du recouvrement argiìeux. African Journal of Science and Technology (AJST). Science and Encineering Series, 6, 12-22.
[20] Chapellier, D. (2000) Prospection électrique en surface. Cours de géophysique. Université de Lausanne, Institut Francais de Pétrole, 98 p.
[21] Béhaegel, M. and Gourry, J.C. (2003) Investigation de pollutions organiques par méthodes géophysiques. Rapport BRGM/RP-52642-FR, 89.
[22] Fink, J.B., McAlester, E.O., Sternberg, B.K., Ward, S.H. and Wieduwilt, W.G. (1990) Induced Polarization, Applications and Case Studies. Society of Exploration Geophysicists, 414.
[23] Seguin, M.K. (1971) Applications des méthodes électriques aux problèmes de genie. L’Ingénieur, 12-21.
[24] Kiberu, J. (2002) Induced Polarization and Resistivity Measurements on a Suite of Near Surface Soil Samples and Their Empirical Relationships to Selected Measured Engineering Parameters. MSc Thesis, ITC, Enschede.
[25] Loke, M.H. (2000) Electrical Imaging Surveys for Environmental and Engineering Studies. A Practical Guide to 2-D and 3-D Surveys, 61.
[26] Loke, M.H. (2004) Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Res2dinv 3.5 Software.
[27] Loke M.H. (1994) The Inversion of Two Dimensional Resistivity Data. Ph.D. Thesis, University of Birmingham, Birmingham, 122.
[28] Loke, M.H. and Barker, R.D. (1996) Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophysical Prospecting, 44, 131-152. http://dx.doi.org/10.1111/j.1365-2478.1996.tb00142.x
[29] Res2dinv ver. 3.59 for Windows XP/Vista/7 (2010) Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. Geoelectrical Imaging 2D & 3D Geotomo Software, Malaysia.
[30] Tabbach, J. (2004) Qwseln. Version 2.23, programme d’interprétation des sondages électriques. C.N.R.S., UMR7619.
[31] Surfer, V.9.8.669, Surface Mapping System Copyright © 1993-1999. Golden Software, Inc., Colorado, 1866.
[32] Salmirinne, H. and Turunen, P. (2007) Ground Geophysical Characteristics of Gold Targets in the Central Lapland Greenstone Belt. Geological Survey of Finland, Special Paper, 44, 209-223.
[33] Dahlin, T., Rosquist, H. and Leroux, V. (2010) Resistivity—IP for Landfill Application. First Break, 28, 101-105.
[34] Meju, M.A. (2002) Geoelectromagnetic Exploration for Natural Resources: Models, Case Studies and Challenges. Surveys in Geophysics, 23, 133-205. http://dx.doi.org/10.1023/A:1015052419222
[35] Campbell, D.L. and Fitterman, D.V. (2000) Geoelectrical Methods for Investigating Mine Dumps. In: Proceedings of the 5th International Conference on Acid Rock Drainage (ICARD), Vol.2, Denver, 21-24 May 2000, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, 1513-1523.
[36] Holliday, J.R. and Cooke, D.R. (2007) Advances in Geological Models and Exploration Methods for Copper ± Gold Porphyry Deposits. Ore Deposits and Exploration Technology, 53, 791-809.
[37] Klein, C. (2005) Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry and Origin. American Mineralogist, 90, 1473-1499.
[38] Slack, J.F. and Cannon, W.F. (2009) Extraterrestrial Demise of Banded Iron Formations 1.85 Billion Years Ago. Science, 37, 1011-1014.
[39] Boiero, D., Godio, A., Naldi, M. and Yigit, E. (2010) Geophysical Investigation of a Mineral Groundwater Resource in Turkey. Hydrogeology Journal, 18, 1219-1233.
[40] Manguelle-Dicoum, E., Nouayou, A.S., Bokossah, A.S. and Kwende-Mbanwi, T.E. (1993) Audiomagnetotelluric Soundings on the Basement-Sedimentary Transition Zone around the Eastern Margin of the Douala Basin in Cameroun. Journal of African Earth Sciences, 17, 487-496. http://dx.doi.org/10.1016/0899-5362(93)90006-C

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.