Inhibition of elastin and collagen networks degradation in human skin by gingival fibroblast. In vitro, ex vivo and in vivo studies.


Skin aging shows an imbalance between synthesis and degradation of the extracellular matrix. The overproduction of degradative enzymes (MMPs) during the chronology- and photo-induced aging leads to a degradation of the elastic and collagen networks. In a model of collagen and elastin destruction, we showed that the gingival fibroblast was able to preserve these macromolecules by inhibiting the overproduction of metalloproteinases by overproduction of TIMP-1 and modulation of the inflammatory cytokines activity. The objective of this study is to evaluate the effect of the gingival fibroblasts on human skin. The results in vitro and ex vivo show that the gingival fibroblast protects the skin collagen and elastic network by the inhibition of MMPs which leads to an overproduction of the TIMP-1. Moreover, the gingival fibroblast modulates the activity of some enzymes responsible for the inflammation; they inhibit the IL-1β and stimulate the production of TGF-β1. In vivo studies with a duration of six months and 50 women with pronounced wrinkles show that the culture supernatant of gingival fibroblasts diluted to 5% leads to a statistically significant decrease in the number and length of wrinkles.

Share and Cite:

B. Gogly, F. Ferré, H. Cherifi, A. Naveau and B. Fournier, "Inhibition of elastin and collagen networks degradation in human skin by gingival fibroblast. In vitro, ex vivo and in vivo studies.," Journal of Cosmetics, Dermatological Sciences and Applications, Vol. 1 No. 1, 2011, pp. 4-14. doi: 10.4236/jcdsa.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Hornebeck, “Down-regulation of tissue inhibitor of matrix metalloprotease-1 (TIMP-1) in aged human skin contributes to matrix degradation and impaired cell growth and survival,” Pathologie-biologie, Vol. 51, No. 10, 2003, pp. 569-573. doi:10.1016/j.patbio.2003.09.003
[2] M. Brennan, H. Bhatti, K. C. Nerusu, N. Bhagavathula, S. Kang and G. J. Fisher, et al, “Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin,” Photochemistry and photobiology, Vol. 78, No. 1, 2003, pp. 43-48. doi:10.1562/0031-8655(2003)078<0043:MMITMC>2.0.CO;2
[3] G. J. Fisher, S. C. Datta, H. S. Talwar, Z. Q. Wang, J. Varani and S. Kang, et al, “Molecular basis of sun-induced premature skin ageing and retinoid antagonism,” Nature, Vol. 379, No. 6563, 1996, pp. 335-339. doi:10.1038/379335a0
[4] G. J. Fisher, Z. Q. Wang, S. C. Datta, J. Varani, S. Kang and J. J. Voorhees, “Pathophysiology of premature skin aging induced by ultraviolet light,” The New England journal of medicine, Vol. 337, No. 20, 1997, pp. 1419-1428.doi:10.1056/NEJM199711133372003
[5] L. Hakkinen, V. J. Uitto and H. Larjava, “Cell biology of gingival wound healing,” Periodontol 2000, Vol. 24, 2000, pp. 127-152. doi:10.1034/j.1600-0757.2000.024001127.x
[6] K. Mak, A. Manji, C. Gallant-Behm, C. Wiebe, D. A. Hart and H. Larjava, et al, “Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model,” Journal of Dermatological Science, Vol. 56, No. 3, 2009, pp. 168-80. doi:10.1016/j.jdermsci.2009.09.005
[7] B. Gogly, A. Naveau, B. Fournier, N. Reinald, E. Durand and C. Brasselet, et al, “Preservation of rabbit aorta elastin from degradation by gingival fibroblasts in an ex vivo model,” Arteriosclerosis, thrombosis, and vascular biology, Vol. 24, No. 9, 2007, pp. 1984-1990. doi:10.1161/ATVBAHA.107.140640
[8] A. Naveau, N. Reinald, B. Fournier, E. Durand, A. Lafont and B. Coulomb, et al, “Gingival fibroblasts inhibit MMP-1 and MMP-3 activities in an ex-vivo artery model,” Connective tissue research, Vol. 48, No. 6, 2007, pp. 300-308.doi:10.1080/03008200701692461
[9] B. Gogly, B. Fournier, L. Couty, A. Naveau, C. Brasselet and E. Durand, et al, “Gingival fibroblast inhibits MMP-7: evaluation in an ex vivo aorta model,” Journal of molecular and cellular cardiology, Vol. 47, No. 2, 2009, pp. 296-303. doi:10.1016/j.yjmcc.2009.04.012
[10] B. Gogly, N. Groult, W. Hornebeck, G. Godeau and B. Pellat, “Collagen zymography as a sensitive and specific technique for the determination of subpicogram levels of interstitial collagenase,” Analytical biochemistry, Vol. 255, No. 2, 1998, pp. 211-216. doi:10.1006/abio.1997.2318
[11] A. Naveau, J. J. Lataillade, B. P. Fournier, L. Couty, M. Prat and F. C. Ferre, et al, “Phenotypic Study of Human Gingival Fibroblasts in a Medium Enriched With Platelet Lysate,” Journal of periodontology, Vol. 82, No. 4, 2011, pp. 632-641.
[12] J. Y. Beranger, G. Godeau, C. Frances, L. Robert and W. Hornebeck, “Presence of gelatinase A and metalloelastase type protease at the plasma membrane of human skin fibroblasts. Influence of cytokines and growth factors on cell-associated metalloendopeptidase levels,” Cell Biology International, Vol. 18, No. 7, 1994, pp. 715-722. doi:10.1006/cbir.1994.1100
[13] J. W. Wong, C. Gallant-Behm, C. Wiebe, K. Mak, D. A. Hart and H. Larjava, et al, “Wound healing in oral mucosa results in reduced scar formation as compared with skin: evidence from the red Duroc pig model and humans,” Wound Repair Regen, Vol. 17, No. 5, 2009, pp. 717-729. doi:10.1111/j.1524-475X.2009.00531.x
[14] G. Gabbiani, “The myofibroblast in wound healing and fibrocontractive diseases,” The Journal of pathology, Vol. 200, No. 4, 2003, pp. 500-503. doi:10.1002/path.1427
[15] A. L. Ejeil, S. Igondjo-Tchen, S. Ghomrasseni, B. Pellat, G. Godeau and B. Gogly, “Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingival,” Journal of periodontology, Vol. 74, No. 2, 2003, pp. 188-195. doi:10.1902/jop.2003.74.2.188
[16] V. M. Bhide, C. A. Laschinger, P. D. Arora, W. Lee, L. Hakkinen and H. Larjava, et al, “Collagen phagocytosis by fibroblasts is regulated by decorin,” The Journal of biological chemistry, Vol. 280, No. 24, 2005, pp. 23103-23113.doi:10.1074/jbc.M410060200
[17] C. M. Overall, “Regulation of tissue inhibitor of matrix metalloproteinase expression,” Annals of the New York Academy of Sciences, Vol. 732, 1994, pp. 51-64. doi:10.1111/j.1749-6632.1994.tb24724.x
[18] T. M. Hassell and E. J. Stanek, 3rd, “Evidence that healthy human gingiva contains functionally heterogeneous fibroblast subpopulations,” Archives of Oral Biology, Vol. 28, No. 7, 1983; pp. 617-625. doi:10.1016/0003-9969(83)90010-9
[19] S. Bordin, R. C. Page and A. S. Narayanan, “Heterogeneity of normal human diploid fibroblasts: isolation and characterization of one phenotype,” Science New York, Vol. 223, No. 4632, 1984, pp. 171-173.
[20] B. P. Fournier, F. C. Ferre, L. Couty, J. J. Lataillade, M. Gourven and A. Naveau, et al, “Multipotent progenitor cells in gingival connective tissue,” Tissue engineering, Vol. 16, No. 9, 2010, pp. 2891-2899.
[21] K. Kobayashi, T. Suzuki, Y. Nomoto, Y. Tada, M. Miyake and A. Hazama, et al, “Potential of heterotopic fibroblasts as autologous transplanted cells for tracheal epithelial regeneration,” Tissue Engineering, Vol. 13, No. 9, 2007, pp. 2175-84. doi:10.1089/ten.2007.0008
[22] K. Kobayashi, T. Suzuki, Y. Nomoto, Y. Tada, M. Miyake and A. Hazama, et al, “A tissue-engineered trachea derived from a framed collagen scaffold, gingival fibroblasts and adipose-derived stem cells. Biomaterials,” Vol. 31, No. 18, 2010, pp. 4855-4863.
[23] E. Tsuruga, K. Irie and T. Yajima, “Gene expression and accumulation of fibrillin-1, fibrillin-2, and tropoelastin in cultured periodontal fibroblasts,” Journal of Dental Research, Vol. 81, No. 11, 2002, pp. 771-775. doi:10.1177/154405910208101110
[24] Q. Zhang, S. Shi, Y. Liu, J. Uyanne, Y. Shi and S. Shi, et al, “Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis,” Journal of Immunology, Vol. 183, No. 12, 2009, pp. 7787-7798. doi:10.4049/jimmunol.0902318

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.