Share This Article:

Utility of 2-Methyl-quinazolin-4(3H)-one in the Synthesis of Heterocyclic Compounds with Anticancer Activity

Abstract Full-Text HTML XML Download Download as PDF (Size:2620KB) PP. 12-37
DOI: 10.4236/ojmc.2014.41002    7,653 Downloads   13,048 Views   Citations

ABSTRACT

Quinolino[2,1-b]quinazolines 3 and 4, pyrrolo[2,1-b]quinazoline 5 and various substituted 2-(4-chlorostyryl)quinazoline derivatives including: 4-amino derivative 8, 4-hydrazino derivative 9, thiourea derivative 10, thiosemicarbazide derivative 19, 4-benzylidene hydrazinyl derivative 21, 4-amino thiazolidene derivatives 11, 12, 13, 22, imidazoquinazolines 15, 16, quinazolinium chloride 14, triazino[4,3-c]quinazolines 17, 18, tetrazino[1,6-c]quinazoline 20, 4-amino azetidinyl derivative 23, triazolo[4,3-c]quinazoline 24, 4-amino substituted quinazolines 25, 26, 27, 29 and quinazolino quinazoline 28 were synthesized through different chemical reactions. The obtained compounds were evaluated for their in vitro antitumor activity against HEPG2 and MCF-7 cell lines compared to the reference drug (doxorubicin). Compounds 18, 19, 20, 23 and 24 were found to be the most active against both cell lines exhibiting IC50 values ranging from 10.82 - 29.46 μM/L and 7.09 - 31.85 μM/L against Hep-G2 and MCF-7 cell lines, respectively, in addition to docking study of these five compounds against thymidylate synthase and dihydrofolate reductase enzymes active sites.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Helali, A. , Sarg, M. , Koraa, M. and El-Zoghbi, M. (2014) Utility of 2-Methyl-quinazolin-4(3H)-one in the Synthesis of Heterocyclic Compounds with Anticancer Activity. Open Journal of Medicinal Chemistry, 4, 12-37. doi: 10.4236/ojmc.2014.41002.

References

[1] Witt, A. and Bergman, J. (2003) Recent Developments in the Field of Quinazoline Chemistry. Current Organic Chemistry, 7, 659-677.
http://dx.doi.org/10.2174/1385272033486738
[2] Wong, H. and Gansan, A. (2003) Total Synthesis of the Fumiquinazoline Alkaloids: Solution-Phase Studies. Journal of Organic Chemistry, 65, 1022-1030.
http://dx.doi.org/10.1021/jo9914364
[3] Micheal, J.P. (2003) Quinoline, Quinazoline and Acridone Alkaloids. Natural Product Reports, 18, 543-559.
[4] Al-Obaid, A.M., Abdel-Hamide, S.G., El-kashef, H.A., Abdel-Aziz, A.A., El-Azab, A.S., Al-khamees, H.A. and El-Subbagh, H.I. (2009) Synthesis, in Vitro Antitumor Activity and Molecular Modeling Study of Certain 2-Thieno-4(3H)-quinazolinone Analogs. European Journal of Medicinal Chemistry, 44, 2379-2391.
http://dx.doi.org/10.1016/j.ejmech.2008.09.015
[5] Al-Omary, F.A., Abou-Zeid, L.A., Nagi, M.N., Habib, S., Abdel-Aziz, A.A., El-Azab, A.S., Abdel-Hamide, S.G., Al-Omar, M.A., Al-Obaid, A.M. and El-Subbag, H.I. (2010) Non-Classical Antifoliates Part 2: Synthesis, Biological Evaluation and Molecular Modeling Study of Some New 2,6-Substituted Quinazolin-4-Ones. Bioorganic & Medicinal Chemistry, 18, 2849-2863.
http://dx.doi.org/10.1016/j.bmc.2010.03.019
[6] El-Azab, A.S., Al-Omar, M.A., Abdel-Aziz, A.A., Abdel-Aziz, N.I., El-Sayed, M.A., Aleisa, A.M., Sayed-Ahmad, M.M. and Abdel-Hamide, S.G. (2010) Design, Synthesis and Biological Evaluation of Novel Quinazoline Derivatives as Potential Antitumor Agents: Molecular Docking Study. European Journal of Medicinal Chemistry, 45, 4188-4198.
http://dx.doi.org/10.1016/j.ejmech.2010.06.013
[7] Berest, G.G., Voskoboynik, O.Y., Kovalenko, S.I., Antypenko, O.M., Nosulenko, I.S., Katsev, A.M. and Shandrovskaya, O.S. (2011) Synthesis and Biological Activity of Novel N-Cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2H- [1,2,4]triazino[2,3-c]quinazoline-6-yl)thio]acetamides. European Journal of Medicinal Chemistry, 46, 6066-6074.
http://dx.doi.org/10.1016/j.ejmech.2011.10.022
[8] Yadav, M.R., Grande, F., Chouhan, B.S., Naik, P.P., Giridhar, R., Garofalo, A. and Neamati, N. (2012) Cytotoxic Potential of Novel 6,7-Dimethoxyquinazolines. European Journal of Medicinal Chemistry, 24, 231-243.
[9] Li, H., Li, D., Lu, X., Xu, Y. and Zhu, H. (2012) Design and Synthesis of 4,6-Substituted-(diphenylamino)quinazolines as Potent EGFR Inhibitors with Antitumor Activity. Bioorganic & Medicinal Chemistry, 20, 317-323.
http://dx.doi.org/10.1016/j.bmc.2011.10.085
[10] Mulakayala, N., Kandagatle, B., Ismail, Rapolu, R.K., Rao, P., Mulakayala, C., Kumar, C.S., Igbal, J. and Oruganti, S. (2012) InCl3-Catalysed Synthesis of 2-Arylquinazolin-4(3H)-ones and 5-Arylpyrazolo[4,3-d]pyrimidin-7(6H)-ones and Their Evaluation as Potential Anticancer Agents. Bioorganic & Medicinal Chemistry, 22, 5063-5066.
http://dx.doi.org/10.1016/j.bmcl.2012.06.003
[11] Zeng, Z., He, Q., Liang, Y., Feng, X., Chen, F., Clercq, E.D., Balzarini, J. and Couque, C.P. (2010) Hybrid Diarylben-zopyrimidine Non-Nucleoside Reverse Transcriptase Inhibitors as Promising New Leads for Improved Anti-HIV-1 Chemotherapy. Bioorganic & Medicinal Chemistry, 18, 5039-5047. http://dx.doi.org/10.1016/j.bmc.2010.05.081
[12] Mohamed, Y.A., Amr, A., Mohamed, S.F., Abdalla, M.M., Al-Omar, M.A. and Shafik, S.H. (2012) Cytotoxicity and Anti-HIV Evaluation of Some New Synthesized Quinazoline and Thiooxopyrimidine Derivatives Using 4-(thiophen-2-yl)-3,4,5,6- Tetrahydrobenzo[h]quinazolin-2(1H)-thione as Synthone. Journal of Chemical Sciences, 124, 693-702.
http://dx.doi.org/10.1007/s12039-012-0242-4
[13] Vijayakumar, K., Ahamed, A.G. and Thiruneelakandan, G. (2013) Synthesis, Antimicrobial and Anti-HIV1 Activity of Quinazoline-4(3H)-one Derivatives. Journal of Applied Chemistry, 5, 387191.
[14] Sharma, P., Kumar, A., Kumar, P., Singh, J. and Kaushik, M.P. (2011) QSAR Modeling of Synthesized 3-(1,3-benzothiazol- 2-yl)2-phenyl Quinazolin-4(3H)-ones as Potent Antibacterial Agents. Medicinal Chemistry Research, 21, 1136-1148.
[15] Anand, R.V., Narasimhan, B., Chandran, R.V.P. and Jayaveera, K.N. (2011) 7-Chloro-3-(substituted benzylidene/phenylethy-lidene amino)-2-phenyl Quinazolin-4(3H)-ones: Synthesis, Antimicrobial and Antitubercular Evaluation. Medicinal Chemistry Research, 21, 2831-2836.
[16] Ryu, C., Kim, Y.H., Im, A.A., Kim, J.Y., Yoon, J.H. and Kim, A. (2012) Synthesis and Antifungal Activity of 6,7- bis(arylthio)-quinazoline-5,8-diones and Furo[2,3-f]quinazolin-5-ols. Bioorganic & Medicinal Chemistry Letters, 22, 500-503.
http://dx.doi.org/10.1016/j.bmcl.2011.10.099
[17] Yadav, M.R., Shirude, S.T., Parmar, A., Balaraman, R. and Giridhar, R. (2006) Synthesis and Anti-Inflammatory Activity of 2,3-Diaryl-4(3H)-quinazolines. Chemistry of Heterocyclic Compounds, 42, 1038.
[18] Chandria, P.M., Yakaiah, T., Rao, A.R.R., Narsaiah, B., Reddy, N.C., Sridhar, V. and Rao, J.V. (2008) Synthesis of Novel 4,6-Disubstituted Quinazoline Derivatives, Their Anti-Inflammatory and Anticancer Activity against U937 Leukemia Cell Lines. European Journal of Medicinal Chemistry, 43, 846-852.
http://dx.doi.org/10.1016/j.ejmech.2007.06.010
[19] Alafeefy, A.M., Kadi, A.A., El-Azab, A.S., Abdel-Hamide, S.G. and Daba, M.H. (2008) Synthesis, Analgesic and Anti-Inflammatory Evaluation of Some New 3H-Quinazolin-4-One Derivatives. Archiv der Pharmazie (wein heim), 341, 377-385.
[20] Manivannan, E. and Chaturvedi, S.C. (2011) Analogue-Based Design, Synthesis and Molecular Docking Analysis of 2,3-Diarylquinazolinones as Non-Ulcerogenic Anti-Inflammatory Agents. Bioorganic & Medicinal Chemistry, 19, 4520-4588.
http://dx.doi.org/10.1016/j.bmc.2011.06.019
[21] Letourneau, J.J., Riviello, C.M., Li, H., Cole, A.G., Ho, K., Zonetakos, H.A., Desai, H., Zhao, J., Auld, D.S., Napier, S.E., Thomson, F.J., Goan, K.A., Morphy, J.R., Ohlmeyer, M.H.J. and Webb, M.L. (2010) Idendification and Optimi- zation of Novel 2-(4-oxo-2-aryl-quinazolin-3(4H)-yl)acetamide Vasopressin V3 (V1b) Receptor Antagonists. Bioorganic & Medicinal Chemistry Letters, 20, 5394-5397. http://dx.doi.org/10.1016/j.bmcl.2010.07.118
[22] Gupta, A., Kashaw, S.K., Jain, N., Jajak, H., Soni, A. and Stable, J.P. (2011) Design and Synthesis of Some Novel 3- [5-(4-Substituted)phenyl-1,3,4-oxadiazole-2-yl]-2-phenylquinazolin-4(3H)-ones as Possible Anticonvulsant Agent. Medicinal Chemistry Research, 20, 1638-1942.
http://dx.doi.org/10.1007/s00044-010-9475-2
[23] Kumar, S., Kaur, H. and Kumar, A. (2012) Synthesis of New Azetidinonyl/Thiazolidinonyl Quinazolinone Derivatives as Antiparkinsonian Agents. Arabian Journal of Chemistry, 5, 475-484.
http://dx.doi.org/10.1016/j.arabjc.2010.09.014
[24] Laddha, S.S., Wadodkav, S.G. and Meghal, S.K. (2009) cAMP-Dependend Phosphodiesterase Inhibition and SAR Studies on Novel 6,8-Disubstituted-2-phenyl-3-(substituted benzothiazole-2-yl)-4(3H)-quinazolinone. Medicinal Chemistry Research, 18, 268-276.
http://dx.doi.org/10.1007/s00044-008-9125-0
[25] Abou Seri, S.M., Abouzid, K. and Abou-El Ella, D.A. (2011) Molecular Modeling Study and Synthesis of Quinazolinone-Arylpiperazine Derivatives as α1-Adrenoreceptor Antagonists. European Journal of Medicinal Chemistry, 46, 647-658. http://dx.doi.org/10.1016/j.ejmech.2010.11.045
[26] Abouzid, K. and Shouman, S. (2008) Design, Synthesis and in Vitro Antitumor Activity of 4-Aminoquinoline and 4-Aminoquinazoline Derivatives Targeting EGRF Tyrosine Kinase. Bioorganic & Medicinal Chemistry, 16, 7543-7551.
http://dx.doi.org/10.1016/j.bmc.2008.07.038
[27] Morin, M.J. (2000) From Oncogene to Drug: Development of Small Molecule Tyrosine Kinase Inhibitors as Antitumor and Anti-Angiogenic Agents. Oncogene, 19, 6574-6583.
http://dx.doi.org/10.1038/sj.onc.1204102
[28] Bridges, A.J. (2001) Chemical Inhibitors of Protein Kinases. Chemical Reviews, 101, 2541-2572.
http://dx.doi.org/10.1021/cr000250y
[29] Xia, Y., Yang, S.Y., Hou, M.J., Kuo, S.C., Xia, P., Bastow, K.F., Nakanishi, Y., Nampoothiri, P., Hackl, T., Hamel, E. and Lee, K.H. (2001) Antitumor Agents. Part 204: Synthesis and Biological Evaluation of Substituted 2-Aryl Quinazolinones. Bioorganic & Medicinal Chemistry Letters, 11, 1193-1196.
http://dx.doi.org/10.1016/S0960-894X(01)00190-1
[30] Al-Rashood, S.T., Aboldaha, I.A., Nagi, M.N., Abou-Zeid, L.A., Abdel-Aziz, A.A., Abdel-Hamide, S.G., Youssef, K.M., Al-Obaid, A.M. and Subbagh, H.I. (2006) Synthesis, Dihydrofolate Reductase Inhibition, Antitumor Testing and Molecular Modeling Study of Some New 4(3H)-Quinazolinone Analogs. Bioorganic & Medicinal Chemistry, 14, 8608-8621.
http://dx.doi.org/10.1016/j.bmc.2006.08.030
[31] Converso, A., Hartingh, T., Garbaccio, R.M., Tasber, E., Richert, K., Fraley, M.E., Youwei, Y., Kreatsoulas, C., Stirdivant, S., Drakas, B., Walsh, E.S., Kelly, H., Carolyn, B.A., Xianzhi, M., Marc, A.T., Stephen, B.C., Weikang, T., Rob, L., Loura, S.L., Joan, Z.M., Vinod, S., Sanjeev, M.K., Sylvie, J.S., Poul, Z.D. and Hartman, G.D. (2009) Development of Thioquinazolinones, Allosteric Chk1 Kinase Inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 1240-1244.
http://dx.doi.org/10.1016/j.bmcl.2008.12.076
[32] Raffa, D., Edler, M.C., Daidone, G., Maggio, B., Merickech, M., Plescia, S., Schillaci, D., Bai, R. and Hamel, E. (2004) Synthesis, Cytotoxicity and Inhibitory Effect on Tubulin Polymerization of 3-Heterocyclosubstituted 2-Styrylquinazolinone. European Journal of Medicinal Chemistry, 39, 299-304.
http://dx.doi.org/10.1016/j.ejmech.2003.12.009
[33] Alagarsamy, V., Revathi, S., Kalaiselvi, R., Phuvaneswari, S., Revathi, R., Amuthalakshmi, S., Vijay, S.K., Kumar, S.M.S., Angayarkanni, T., Sarathadevi, M., Saravan, K.S., Thaugatiruppathy, A., Venkatnarayanan, R. and Vankatesatermal, R. (2003) Analgesic, Anti-Inflammatory and Antibacterial Activity of Some Novel 2-Phenyl-3-(substituted methylamino)quinazolin-4(3H)-ones. Indian Journal of Pharmaceutical Sciences, 534-536.
[34] Gupta, A., Mishra, P., Kashaw, S.K., Jatav, V. and Stables, J.P. (2008) Synthesis and Anticonvulsant Activity of Some Novel 3-Arylamino/Amino-4-aryl-5-imino-Delta(2)-1,2,4-Thiadiazoline. European Journal of Medicinal Chemistry, 43, 749-754.
http://dx.doi.org/10.1016/j.ejmech.2007.05.008
[35] Ashcroft, A.J., Davies, E.E. and Morgan, G.J. (2003) Aetiology of Bone Disease and the Role of Bisphosphonates in Multiple Myeloma. Lancet Oncology, 4, 284-292.
http://dx.doi.org/10.1016/S1470-2045(03)01076-3
[36] Neiementowski, V. (1895) Neiementowski Quinazoline Synthesis. Journal für Praktische Chemie, 51, 564.
[37] Selvam, P., Breitenbach, J.M., Borysko, K.Z. and Drach, J.C. (2010) Synthesis, Antiviral Activity and Cytotoxicity of Some Novel 2-phenyl-3-Disubstituted Quinazolin-4(3H)-Ones. International Journal of Drug Design and Discovery, 1, 149-154.
[38] Hemalatha, K. and Girija, K. (2011) Synthesis of Some Novel 2,3-Disubstituted Quinazolinones Derivatives as Analgesic and Anti-Inflammatory Agents. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 103-106.
[39] Raffa, D., Daidone, G., Maggio, B., Cascioferro, S., Plescia, F. and Schillaci, D. (2004) Synthesis, Antileukemic Activity of New 3-(5-Methylisoxazol-3-yl) and 3-(Pyrimidin-2-yl)-2-styrylquinazolin-4(3H)-ones. IL Farmaco, 59, 451- 455.
http://dx.doi.org/10.1016/j.farmac.2003.10.006
[40] Jatav, V., Kashwa, S. and Mishra, P. (2008) Synthesis, Antibacterial and Antifungal Activity of Some Novel 3-[5-(4- Substituted phenyl)1,3,4-thiadiazol-2-yl]-2-styrylquinazolin-4(3H)-ones. Medicinal Chemistry Research, 17, 169-181.
http://dx.doi.org/10.1007/s00044-007-9047-2
[41] Okano, M., Mito, J., Maruyama, Y., Masuda, H., Niwa, T., Nakagawa, S., Nakamura, Y. and Matsceura, A. (2009) Discovery and Structure-Activity Relationships of 4-Aminoquinazoline, a Novel Class of Opioid Receptor Like-1(ORL1) Antagonists. Bioorganic & Medicinal Chemistry, 17, 119-132. http://dx.doi.org/10.1016/j.bmc.2008.11.012
[42] Amin, K.M., Georgey, H.H. and Awadallah, F.M. (2011) EGFR Tyrosine Kinase Targeted Compounds: Synthesis, Docking Study and in Vitro Antitumor Activity of Some Newquinazoline and Benzo[d]isothiazole Derivatives. Medicinal Chemistry Research, 20, 1042-1053.
http://dx.doi.org/10.1007/s00044-010-9437-8
[43] Stadlbauer, W., Fiala, W., Fisher, M. and Hojas, J. (2000) Thermal Cyclization of 4-Azido-3-nitropyridine-2-suroxanes. Journal of Heterocyclic Chemistry, 37, 1253-1256.
http://dx.doi.org/10.1002/jhet.5570370537
[44] Chandrappa, S., Prasad, S.B.B., Vinaya, K., Kumar, C.S.A., Thimmegowda, N.R. and Rangappa, K.S. (2008) Synthesis and in Vitro Antiproliferative Activity against Human Cancer Cell Lines of Novel 5-(4-Methyl-benzylidine)-thiazolidino-2,4-diones. Investigational New Drugs, 26, 437-444. http://dx.doi.org/10.1007/s10637-008-9130-7
[45] Yurchenko, R.I., Ponomarenko, A.D., Savina, N.S. and Tolmachev, A.A. (2004) 2-(1-Adamantyl)-7-methylimidazo[1,2-a]pyridine and Its Reactions with N-Bromosuccinimide. Chemistry of Heterocyclic Compounds, 40, 1543-1545.
[46] Berest, G.G., Voskoboynik, O.Y., Kovalenko, S.I., Antypenko, O.M., Nosulenko, I.S., Katsev, A.M. and Shandrovskaya, O.S. (2011) Synthesis and Biological Activity of Novel N-Cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2H- [1,2,4]triazino[2,3-c]quinazolin-6-yl)thio]acetamides. European Journal of Medicinal Chemistry, 46, 6066-6074.
http://dx.doi.org/10.1016/j.ejmech.2011.10.022
[47] Abouzid, K. and Shouman, S. (2008) Design, Synthesis and in Vitro Antitumor Activity of 4-Aminoquinoline and 4-Aminoquinazoline Derivatives Targeting EGFR Tyrosine Kinase. Bioorganic & Medicinal Chemistry, 16, 7543-7551.
http://dx.doi.org/10.1016/j.bmc.2008.07.038
[48] Chemical Computing Group (2005) Molecular Operating Enviroment (MOE). Version 2005.06, Chemical Computing Group, Inc. Montreal. http://www.chemcomp.com
[49] Mosmann, T. (1983) Rapid Colorimetric Assay for Cellular Growth and Survival Application to Proliferation and Cytotoxicity Assays. Journal of Immunological Methods, 65, 55-63. http://dx.doi.org/10.1016/0022-1759(83)90303-4
[50] Vijayan, P., Raghu, C., Ashok, G., Dhanaraj, S.A. and Suresh, B. (2004) Antiviral Activity of Medicinal Plants of Nilgiris. Indian Journal of Medical Research, 120, 24-29.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.